CDF

Fortran Reference Manual

Version 2.7, July 22, 2005

Space Physics Data Facility

Copyright © 2005 NASA/GSFC/SED/ESED/SPDF
Space Physics Data Facility

Earth-Sun Exploration Division

Science and Exploration Directorate
NASA/Goddard Space Flight Center

Greenbelt, Maryland 20771 (U.S.A.)

This software may be copied or redistributed as long as it is not sold for profit, but it can be incorporated into any other
substantive product with or without modifications for profit or non-profit. If the software is modified, it must include
the following notices:

- The software is not the original (for protection of the original author’s reputations from any problems introduced
by others)

- Change history (e.g. date, functionality, etc.)

This copyright notice must be reproduced on each copy made. This software is provided as is without any express or
implied warranties whatsoever.

Internet - cdfsupport@listserv.gsfc.nasa.gov

Contents

(3T 75 o TR 1
(0703 1111 1T TSRS 1
1.1 VIMS/OPENVIMS SYSLEINISc.viuvevinieiiieeiriesietetetesesessesessesesseeesessesessessssesessassssessesessessssensssensesesesessassssensssensssensens 2

1.2 UNIX SYSERIMISueuieiieitetetetet ettt ettt ettt e et et e ae st et et et e b e b e b et e besbensensense b ebebebesbenbesenbenbesbenbensensesen 3

1.3 MS-DOS Systems, MiCTOSOTt FOTTTANccuevviriiiiieieierieees ettt sttt bbb saen 3

1.4 Windows NT/95/98 Systems, Digital Visual FOrtranccocoeeeirieirierinenieinieieiecsieseeeeseee e 4

1.5 Macintosh Systems, MPW FOITraAN...........ccoiririirieiirieeiciecsieeeteeee ettt sttt a et ssesessenesseneesennens 4
(0TS TSRS 5
LINKITIZ ettt b bbbt b e bbbt b e bbb bt b bbb e bt b e b b e bt b e b e b e e b e e b e e b e e b e beebeebeebeebeebeebeebesaenbetas 5
2.1 VAX/VMS & VAX/OPENVIMS SYSLEINSveuveviieriieeisieneeteiesitesessestssesessasessessesessessssessssassesessesessessssessssesssensens 5

2.2 DEC Alpha/OpenVIMS SYSIEIMISecueruirierieterterietestestestestestestestestestestestessessessessessessessessessessessessessessessessessessessens 5

2.3 UNIX SYSEOIMIS ...ttt ettt et et ettt et et et et et et et et et e senbe b e b e s e senbe st ensesbe b enbebesbesesenbenbesbesbensensensen 6
2.3.1 Combining the Compile and LiNK..........ccccooeirieiiriirininieiriet ettt 6

2.4 MS-DOS Systems, MiCTOSOTt FOTTTANccueruiriiiiieieieieesese ettt sttt st sbe e saen 6

2.5 Windows NT/95/98 Systems, Digital Visual FOrtranccccoeecivieirieeiienieinieisieesecseeeee e 7

2.6 MacintoSh SYSTEMS, MPWccooiiiiiieiiiieirieisiecetee ettt ettt se et e s e s e sseseebesessenessensesessesessenessanens 8
(3T TSRS 9
Linking Shared CDF LIDIAIYccceirieirieirieisieietestetesteeesteststetesessesessesessestssessesessesessessssasessansesessesessessssanessensesessessssesssseneas 9
3.1 VAX (VMS & OPENVIMS) ...ttt ettt ettt sttt st b ettt b ettt b bttt b et sttt et ene 9

3.2 DEC AIPha (OPENVIMS) ...ttt sttt sttt et ettt besbesb e b e st et e sbesbesbesbesbesbesbenbenee 10

33 SUN (SUNOS) .ttt bbbttt st b bbb b bttt b bt s e b bt st b bt st et b et es 10

3.4 SUN (SOLARIS) ..ottt ettt ettt b et b bttt b ettt b bt st b bttt b bt st et eb et st st eb et es 10

3.5 HP 9000 (HP-UX) .ottt ettt sttt sttt st b ettt b ettt b et es 11

3.6 IBM RSO000 (AIX)..ecuiuiririeieiinirieteinerieiet sttt sttt ettt ettt ettt s b bttt b bttt b bt st et b et st beb et es 11

3.7 DEC AIPRA (OSF/1) ottt sttt ettt sttt b bttt b ettt 11

3.8 SGI (TRIX 5.X & 0.X) vttt ettt ettt sttt st bbbt b et b et st b bt st b bt st b bt st st b et es 11

3.9 LINUX (PC & POWET PC) ..ttt sttt sttt b e s bbbt s b b e besbesbesbesbesbe e 12

3.10 WINAOWS (NT/95/98) ..ottt ettt st b et st b bttt b ettt b et es 12

T Y T3 £] (1 oL 1) TSR 12
(31 o7 o USSR 13
Programming INEEITACEcoiiiiiiiiiiietee sttt b bbbt s b e bbb b b sb e b s b s b e s b e s b e sbesbesbesbesbesbesbesbesbesbens 13
4.1 ATGUIMEIE PASSINZ. ...ttt ettt ettt et et et et e b e be st e b e s b e besbesbesbesbenbesbesbesbenbenbensens 13

4.2 TEEM RETETEINCING ...ttt sttt ettt st et be b e st e st e s b et e besbesbesbesbesbesbesbenee 14

43 Statts Code CONSTANTS.......c.eoveuirieirieieiiietintet ettt ettt sttt ettt et sttt b et b e at s s st saesesbeseebesenesaesesuenean 14

4.4 CDF FOIMALS ...ttt sttt ettt sttt ettt s a et bbbt s bttt sa et eb e ebe e st saenes 14

4.5 CDF Diata TYPES ..uveuveuvententeientestestestestestestestestestestessestestessestestesbessessesessensessessessebessessesbesbesbesbesbenbesbesaesbensessensenee 14

4.6 Data ENCOGINESveutenteieieieiesiet ettt sttt ettt et ettt et et et e s b e st e b et et e besbesbe st esbesbebesbesbesbesbesbenbesbenbenee 15

4.7 DAta DECOMINES ...uveuvenvenieietiiesiet ettt ettt ettt s b et et et e be st e s be b esbe b e besbesbesbesbesbebesbesbesbesaesbenbenbesbenee 16

4.8, Variable MajOritieS......ccveuirieririeeiiieirieietetetesteteetesestest et eseesesseseesesessese st eseesessesesseseesesessantesensesensesessesessenessenensensns 17

4.9 Record/DImension VATIANCESc.coueireirieirieieiinieiineeutnieeenieteteeetes st sseaesaesesseseesessesesaesesaesesaeseeseseesensesessenes 18

410 COMPIESSIONS. ..uveuvintentetertertestestestestestestestestessestessessessessessessessessessessessessessessessessessessessesesbesbessessesbesbessesbessessensenee 18

ATT SPAISEIIESS .uveuviutintitetertestestestestestestesbesbesbestesbesbesbe st esbesbesbesbe b esbe b esse s e besb e b e s b e sbe b e ebesb e besbenbeebeebenbeebeebesbenbenbenbenee 19
4111 SPAISE RECOIAS ... veuiieiieiiieiiieeieieite ettt ettt ettt ettt b e st s b eseese e et eaesessesesbenessenessensesessesessensssaneas 19

A.1T1.2 SPATSE ATTAYS c.vevervitietiitiiteste st st st st st ettt sb e s bt bt be s b e s b e s b e sb e e b e s besb e s besbesbesbe s b e s b e sbesbesbesbesbesbesbesbesbesbesbesbesbenbenne 19

412 ATTIDULE SCOPES .uviuventitiriiriintestestest st st st e st st e st e ste st e s tesbesbesbe st e sbe st esbesbesbesb et esbesbesbesbe st esbesbesbesbesbesbesbesbesbessesbensenee 19
413 ReEAA-ONLY MOAES.....ccviieiiieiieieiirieiieteiet ettt ettt ettt be st s se st s eseesesesesseseesesessantesansesenseseesesessenessenessensns 20
.14 ZIMIOAES ...ttt ettt etttk h et et h et h ettt b sttt ebe e e 20
415 =00 10 0.0 MOGES.....cuiiitetiiritetci sttt b ettt bbbttt b et b et b bttt b ettt b et 20

i I @015 1 Te) 1 -1 B 5001 L F TP PP OS PRSP 20

4.17 Limits of Names and Other Character STINESccceerueirieirieirieieierieesteeeseee et eesseseesessesessesessenessesessensns 21

(3107 TSR 23

StANAATA TNEETTACEeeneeeieeieeee ettt ettt et et et et et et et e b et et et et et et esbesbe b e sbesbesbesbenbesbenaenee 23
5.1 CDF _CT@ALEeuteuteneetetetet ettt ettt ettt ettt et e st et et e s b et et et e b e b et e b et e b et e beebesbesbesbebesbesbesbesbesbenbenbenbenee 23
5.1.1 EXAIMPIE(S) .ottt ettt ettt ettt et et et et et et et et et et et e b e be b e b et e nbesbenbeebesaenbetes 24
5.2 CDF O CM ettt ettt ettt et et e b et e b e b e b et et et e b et et e b e b e b e b e b e b e beeheebeebeebenbeshenbenbenbenbenee 25
5.2.1 EXAIMPIE(S) vttt ettt ettt ettt et et et et et et et et et et e b e be b e bebebesbenbeebesbentenaes 25
53 CDF _dOC .. ettt ettt ettt ettt b et b e b e b et et et e b e b et e b b e b e bt ehe b e b e he b e ebenbenbesaesbeebenbenbenee 26
5.3.1 EXAIMPIE(S) c-veuventenienieietet ettt ettt ettt et e et et et et et et et et et et e b e bebebebenbesbenbeebesaenaeaes 26
54 CDF _IMIQUITE ..ottt ettt ettt ettt ettt et e st et e st e s b et et et et et et e s et e b e bebesbesbesbesbebesbesbesbesbesbenbenbebenee 27
5.4.1 EXAIMPIE(S) oottt ettt ettt et et e et e b st e b et et et et et et e b e be b et et e besbenbenbeshenaeaes 28
5.5 (03] S o) 1o TP 28
5.5.1 EXAIMPIE(S) .ottt ettt et ettt ettt e et e st et et et et et et et e b e b e b e be b e besbenbenbeshentenaes 29
5.6 (610 T 151 1< PSPPSR PSPPI 29
5.6.1 EXAIMPIE(S) c-veuvententenieietetetet ettt ettt ettt ettt et et et et et et et et et et e b e b e b e b e be b e besbesbenbesaentenaes 30
5.7 CDF _ITOT ...ttt ettt ettt ettt et ettt et et et et et e b et et et e b et e b e b e b e b e besbesbeebesbebesbesbenbesaesbenbenbesbenee 30
5.7.1 EXAIMPIE(S) c-veureutenienieieiet ettt ettt ettt ettt et et et et et et et et et et et e b e b e b e b et e ebesbenbeebesbenbeaes 30
5.8 (@1 o g o1 (< 11U P TP 31
5.8.1 EXAIMPIE(S) c-veuventenienieieiet ettt et ettt ettt et et et et et et et et e b et e b e be b et et e besbesbeebeshenbeaes 32
5.9 (@1) o g 11113 DSOS PSPPI 32
5.9.1 EXAIMPIE(S) -veurentenienieieiet ettt ettt ettt ettt et et et et et et e b et e b e b e b e b e b et e beebesbesbenbesaenbenaes 33
S5.10 CDF QI TENAMEccuevviiuiriiiiiiiiitisteeieste st st sttt sttt st st st e s besbesbesbe s b e sbesbesb e sbesbesbesbesbesbesbesbesbesbesbesbesbesbesbesbesbeses 33
T O R 25211 01) (<) ISP 33
T B R O - s o ¥ Le L1 (T TP PPSPRP 34
TN O B 2211 013) (<) IO PSPPSR 34
5.12 CDF_attr eNtIY INQUITE c..evvirvertiriertertestestestesteste st stestestestesbessesbenses 35
T 2 B 2 211 11) (<) IO PSPPSRI 36
T I O D) -1 » o1 USSP PTPPRPI 37
TN B B 2211 11) (<) ISP 38
T O D) 1 1 » <1 APPSO PSPPSR 38
TN 3 R 2211 11) (<) ISP 39
T I O D) S 7 g o2 (<. |1 T PSPPSR PRSPPI 40
T T B 2211 11) (<) ISP 41

T L O) 7 g 11111 WP PRSPPI 42
T T B 2211 115) (<) I USSP 42
S.17 CDF _VAT_TENAIMNEeviviiiiiiieitesteste et sttt sttt sttt st sbesbe st s besbe s b e s besbesbe s bt s besb e sbesbesbesbesbesbesbesbesbesbesbesbesbesbesbesbesbenses 43
TN B B 2211 113) (<) ISP 43
S.18 CDF VAT INQUITEeouirtiriiiiiiieitiitesteete sttt sttt st sttt sttt s be b bbb s b s b s be s bt sbesbe s b e sbesbesbesbesbesbesbesbesbesbesbesbesbesbenses 44
T BT B 2211 013) (<) I USSP 45

T I O 7 g o] | TP PPRPI 45
T N N 2211 11) (<) ISP 46
520 CDF _VAT_ZET c.itiitiiiiiiiiiiitiitesie sttt sttt sttt sttt sttt b e s bbb bbb bt s bt b s bt s b s bt e b e s b e e b e b e e b e b e bbb e eb e b e e beebesbesbenbesbenbes 47
I O R 5211 11) (<) ISP 47
521 CDF VAT _MYPET PUL...itiitiiiiiiiitiitiiteeieste sttt sttt b e s b bbbt s b e s b b s b e s b e s b e s besbe s b e sbesbesbesbesbesbesbesbenees 48
I B B 2211 11) (<) ISP 49
522 CDF VAT _MYPET GO ...icuiiuiiiiiiiitiitiiteete sttt sttt st b e bt bbb b bbb s b s b e s b e s b e s besbe s b e sbesbesbesbesbesbesbesbenees 50
I B > €211 11) () ISP 51
523 CDF _VAT_ClOSE ..c.uiiuiitiitiiiitiitestt sttt sttt b e bt bbbt bbb e s b s b s b s b e s b e e besbe s b e sbesbesbesbesbesbesbesbenees 52
I 0 B 211 11) () ISP 52
524 CDF_etrvVarsr@COTAUALAc.ccveiruiietiieiisieeietete ettt sttt teet st et e et sesessesesseseesessesessesesseseesenseseesesessenessanessensnns 53
TN 3 N > €211 11) (<) I TSP 53
5.25 CDF_putrvarst@COTAAAtaccevuiriiriiiriiitisiesie sttt sb e sb e sb e st sbesb e st st e b e st e sbesbesbesbesbesbesbesees 54
I 0 N 5 211 11) (<) ISP PRSPPI 55
526 CDF_getzvarSreCOTAAALA.eciruiieiiieiisieietete ettt sttt ettt s be st se et e e esessesesseseesensesesseseesenessanessensns 56
I 30 N 5 €211 11) (<) I USSP 57
527 CDF_pUtzZVarst@COTAUALA.ceeiruiieiiieiirieieiete ettt ettt ettt se et se et e s eseesesesseseesesesessesessenessaneesensns 58

I A N 211 11) (<) IO PSPPI 59

(31 o7 o XTSRS 62

Internal INErface — CDF _LID.......cciieiiiiieiiieiieiet ettt ettt ettt et b et et e e et e sestssenessene et e s esessesessenesseneesennens 62
6.1 251101 0) (<] () F PSPPSR 62

6.2 Current Objects/States (ILEIMNS)cirveirieeirieirierieetete et teet et esestese et seseesessesessesessesessessesessesessenesseseesensnns 65

6.3 REUINEA STATUS. ...ttt ettt ettt st sttt a et bt sae e b et ns st aenes 68

O 1 Ta [17213 10 0 VA 4 (<SRRI 68

6.5 L2 QOO USSP PRPSPRURPRRON 69
6.5.1 Macintosh, MPW FOITIANcooviiiioeieeecee ettt ettt ettt e e et e eseenneeaeeeseeeeeneeeseenneenen 69

6.6 OPETALIONS. . +.ueeuveuteietetetet ettt et et e te st e testestebebesbesbesbesbesbebenbebebesbe s e sesesenbesbesbesbesbesbebesbesbesbesbesbenbesbensenne 70

6.7 IMOTE EXAMPIES.....c.eeutenieieiiietetestest ettt ettt et ettt ettt et e b et e b e st et e besbesbesbesbesbesbesbesbesbesbesbenbesbeees 127
6.7.1 TVATIADIE CTEALION....c.evvtiiiteiieiritet ettt bbbttt b ettt b ekttt bbbttt b bttt b bt st b es 127

6.7.2 zVariable Creation (Character Data TYPE)ccververierierierienienierieniestesie ettt sttt st sttt sae e e 128

6.7.3 Hyper Read with SUDSAMPLING.......ccocveirieirieiriiieiieeee ettt e s saesessenes 128

6.7.4 ATITDULE RENAIMINGcoviitiiiiiiiitiiiiitieess et b e s bbb bbb sbe s b sbesbesbesbesbesbesbens 129

6.7.5 SEQUENLIAL ACCESS ..ouveviveeiienieteietirieie et stet st et et e e st ae st esestssese et eseesesseseesesessesesseneesensesessesessessssensssensesensans 130

6.7.6 AUTTDULE TENITY WITEES ..eovetiiiiitiitiitieiereet sttt b st sb e sb e sb e sbesb e st sbesbe st st 130

6.7.7 MUILIPLE ZVATIADIE WIILEevieievieieiiieiieieeeietete ettt ettt a et esesessenessensesesesessenes 131
(3T TSR 133
INterpreting CDEF Stattis COA@Soouiiuiriiriiriiriiriesierie sttt sttt sttt b ettt b e s b s bbb e sbesb e sbesbesbesbesbesbesbesbesbesbesbesbesbeee 133
(3T o TSR 135
EPOCH UILY ROULNESc.eitiitiitiiieiteitesieseste sttt sttt sttt st sb s bbbt bbb s b s b b s b e sbesbesbesbesbesbesbesbesbesbesbesbesbesbesbenne 135
8.1 COMPULE EPOCH ...ttt sttt st b et et s b e s b s bt s b e s b e st e sbesbesbesbesbesbennes 135

8.2 EPOCH _DIEaKAOWI......cueeiiieeiieiiiteeieieietistete ettt stet sttt saeseese st ssesesseseeseseseesesessesessansesensesessesssseneesensesansesessens 135

8.3 €NCOAE EPOCH........cuiiieiiieieiiieeee ettt ettt et s e st b e et s s eseesese s eneesenseseeseseesenesseneesensesessenas 136

< TeTe 1o [=1 o 11 = I TSRS 136

8.5 €NCOAE EPOCH2........oieiiiiieiiee ettt ettt st s et e et e s s e st e sese e s e st et enseseesesessenessenensensesessenis 136

8.6 €NCOAE EPOCHS.... ..ottt ettt ettt se et et s et e e s e st s s e st e s e st et e s eseesesesseneeseneesenseseesenas 137

8.7 €NCOAE EPOCHXciiiiieiiieiieieieteietete ettt ettt et a et s et s e st st e e et e s eseeseseeseneeseneeseseseesesesseneeseneesensesensenas 137

8.8 PATSE EPOCH. ...ttt ettt ettt et et et et et et et et et et e st e be b et et e b e ebenbenbenbenbe e 138

E IR o Ve 21 o 0 1) =) PO PUOPPPRPN 138

LI L o Ve 21 o0 13 = LTSRS US P UTUPPPRPN 138

LT B R o Ve 21 o 0 13 = K PO U P UTOPRPRPN 139

812 cOMPULE EPOCHILO ..ottt s b e s b bbb bbb sbe st e s besbesbesbesbesbesbens 139

813 EPOCHIO BIeaKAOWIN.....c.eveuiieeiieeieiiieiiteit ettt ettt sttt a et ae e s e e e s et et e s esessesessenesseneesansesessenas 139

814 €NCOAE EPOCHILO.....ccuiieiiieiieieieteietete ettt ettt st e et e s et e e s e st s s e st e s ane et esesessesesseneeseneesansesessens 140

815 €NCOAE EPOCHILO 1 .oeiuiiiiieiiieicieieieiet ettt sttt sa et s s s s et s et et e s esessesessenesseneesensesessenas 140

8.16 €NCOAE EPOCHILO 2 ..ottt ettt sttt et et s et s ese s s e st e s e st et e s esessesessenesseneesensesessenis 140

8.17 enCOAe EPOCHILO 3 ..ottt ettt sttt sa et e s e st s e st s et et e s esessesesseneeseneesenseseesenas 141

818 €NCOAE EPOCHILO X ..cviuieiiieiiieiieieieieietestete ettt ste ettt saeseese s sese st ese et eseseesesesseseesansesensesessesessenesseneesensesessnnas 141

I R o Ve 21 o0 103 = L T PSP U PSPPI 142

8.20 PATSE EPOCHIO 1 ..eiiiiiiiiiiiiiiiiiieeticteeteet ettt b e bt bbb b b s bbb s b sbe st e s besbesbesbesbesbesbens 142

821 PArSE EPOCHIO 2oiiiiiiiiiiieieeteeteete sttt st b et b e s bbb s b s b s b e s b sbesbesbesbesbesbesbesbesbesben 143

8.22 PArSE _EPOCHIO 3oiiiiiiiiieiiiteteete sttt b bbbt b e s bbb s b s b b e st s b e s b e s b e s besbesbesbesbesbe b 143
AAPPEIAIX A .ottt sttt sttt h et et h e bbb e b e b e ek e e b e b e b e heehe b e b e b e behe b e hebebe b e beebeebeebeeheebeebeebesbenbenbenaens 145
STATUS COAES ...ttt ettt ettt sttt h et e bt et b etk s bt s et s bt e bt eh st sa st sbeseeb et et e s st naenesaeneas 145
AT INETOAUCTION .ottt b st b et b ettt b bttt b bt s bbb bttt b bttt ebene 145

A2 Status Codes and MESSAZES......coveruerierierierterieriertestesteste e stestestestestesteste st esbesbesbesbessessesaesbesbesbesbesbesbessesbessensessenes 145
APPEINAIX Bo.ooieiiiieee ettt b e b bbb b e bbb e b b e he b e b e he b e b e b e b e e hesheebeeheebeebenbesbesbenbenben 155
Fortran Programming SUIMIMATYc.cceiviririnininiise sttt sttt sttt sttt bbb bbb b sb e st e sbesbesbesbesbe st e sbesbesbesbesbesbesbene 155
Bl Standard INEITACE.c.cirieiiiiiiiiiicicrcrce ettt ettt sttt 155

B.2 INernal INEITACEcc.oevieuiiiiiiiiiiiiicc ettt ettt ettt et 160

B.3 EPOCH Uty ROUINES ..c.vetiiiiiieiesieiesiesesesteste sttt sttt sttt ettt b e st ettt st b e st sbesbesbesbesbesbesbesbennas 167

Chapter 1

Compiling

Each program, subroutine, or function that calls the CDF library or references CDF parameters must include one or
more CDF include files. On VMS systems a logical name, CDF$INC, that specifies the location of the CDF include
files is defined in the definitions files, DEFINITIONS.COM, provided with the CDF distribution. On UNIX systems
an environment variable, CDF INC, that serves the same purpose is defined in the definitions files definitions.<shell-
type> where <shell-type> is the type of shell being used: C for the C-shell (csh and tcsh), K for the Korn (ksh), BASH,
and POSIX shells, and B for the Bourne shell (sh). This section assumes that you are using the appropriate definitions
files on those systems. On MS-DOS and Macintosh (MacOS) systems, definitions files are not available. The location
of cdf.inc is specified as described in the appropriate sections for those systems.

On VMS and UNIX systems the following line would be included at/near the top of each routine:
INCLUDE '<inc-path>cdf.inc'

where <inc-path> is the files name of the directory containing cdf.inc. On VMS systems CDF$INC: may be used for
<inc-path>. On UNIX systems <inc-path> must be a relative or absolute files name. (An environment variable may
not be used.) Another option would be to create a symbolic link to cdf.inc (using In -s) making cdf.inc appear to be in
the same directory as the source files to be compiled. In that case specifying <inc-path> would not be necessary. On
UNIX systems you will need to know where on your system cdf.inc has been installed.

The cdf.inc include files declares the FUNCTIONS available in the CDF library (CDF var num, CDF lib, etc.). Some
Fortran compilers will display warning messages about unused variables if these functions are not used in a routine
(because they will be assumed to be variables not function declarations). Most of these Fortran compilers have a
command line option (e.g., -nounused) that will suppress these warning messages. If a suitable command line option is
not available (and the messages are too annoying to ignore), the function declarations could be removed from cdf.inc
but be sure to declare each CDF function that a routine uses.'

Microsoft Fortran

On MS-DOS systems using Microsoft Fortran the following lines would be included at/near the top of each
routine/source files:

INCLUDE 'cdfmsf.inc'

(PROGRAM, SUBROUTINE, or FUNCTION statement)

' Removing the function declarations from edf.in¢ should be avoided if possible.

INCLUDE 'cdf.inc'

The include files cdfmsf.inc contains an INTERFACE statement for each subroutine/function in the CDF library.
Including this files is absolutely essential if you are using the Internal Interface (CDF lib). cdfmsf.inc is located in the
same directory as cdf.inc.

NOTE: There are limitations on where cdfmsf.inc can be included. It must generally be included before the
PROGRAM, SUBROUTINE, or FUNCTION statement of a routine. If a source files contains multiple routines,

cdfmsf.inc only needs to be included once (at the very top of the source files). cdf.inc, however, may need to be
included inside each routine.

Digital Visual Fortran

On Windows NT/95/98 systems using Digital Visual Fortran, the following lines would be included at the top of each
routine/source files:
(PROGRAM, SUBROUTINE, or FUNCTION statement)

INCLUDE 'cdfdvf.inc'
INCLUDE 'cdfdf.inc'

The include files cdfdvf.inc contains an INTERFACE statement for each subroutine/function in the CDF library.
Including this files is absolutely essential no matter if you are using the Internal Interface (CDF lib) or Standard
Interface (e.g., CDF create, etc.) cdfdvf.inc is located in the same directory as cdf.inc. The include file cdfdf.inc is
similar to cdfdf.inc, with some statements commented out for Digital Visual Fortran compiler.

On Macintosh systems using Macintosh Programmer's Workshop (MPW) Fortran the following line would be included
at/near the top of each routine:

INCLUDE 'cdf.inc'

The location of cdf.inc will be made known to MPW Fortran when the routine is compiled.

1.1 VMS/OpenVMS Systems

An example of the command to compile a source file on VMS/OpenVMS systems would be as follows:
$ FORTRAN <source-name>

where <source-name> is the name of the source file being compiled. (The .FOR extension is not necessary.) The
object module created will be named <source-name>.0OBJ.

NOTE: If you are running OpenVMS on a DEC Alpha and are using a CDF distribution built for a default double-
precision floating-point representation of D FLOAT, you will also have to specify /FLOAT=D_FLOAT on the CC
command line in order to correctly process double-precision floating-point values.

1.2 UNIX Systems

An example of the command to compile a source file on UNIX flavored systems would be as follows:

s £77 -c <source-name>.f
where <source-file>.f is the name of the source file being compiled. (The .f extension is required.)

The -c option specifies that only an object module is to be produced. (The link step is described in Chapter 2.) The
object module created will be named <source-name>.o.

1.3 MS-DOS Systems, Microsoft Fortran

NOTE: Even though your application is written in Fortran and compiled with a Fortran compiler, compatible C run-
time system libraries will be necessary to successfully link your application. This is because the CDF library is written
in C and calls C run-time system functions.

An example of the command to compile a source file on MS-DOS systems using Microsoft Fortran would be as
follows:’

> FL /c /AL /FPi /I<inc-path> <source-name>.for

where <source-name>.for is the name of the source file being compiled (the .for extension is required) and <inc-path>
is the file name of the directory containing cdfmsf.inc and cdf.inc. You will need to know where on your system
cdfmsf.inc and cdf.inc have been installed. <inc-path> may be either an absolute or relative file name.

The /c option specifies that only an object module is to be produced. (The link step is described in Chapter 2.) The
object module will be named <source-name>.obj.

The /AL option specifies that the object module is to be compiled using the large memory model. The CDF library for
Microsoft Fortran supplied with the CDF distribution is compiled using the large memory model. If you need to use
the huge memory model for your application, you will also need to rebuild the CDF library for the huge memory
model.

The /FPi option specifies how floating-point operations will be handled at run-time. With this option a math
coprocessor will be used if it exists; otherwise, the emulation library will be called. Using this option allows your
program to run on any MS-DOS system regardless of whether or not a math coprocessor exists. If you know that a
math coprocessor exists, you may want to use a floating-point option that provides better performance.

You may instead want to use the Microsoft Programmer's Workbench (PWB) development environment to
compile/link your applications. The options shown above for the command line compiler are specified in the
development environment. Consult the documentation for the PWB for the steps necessary to compile/link your
application.

NOTE: The CDF library is written in C. The Fortran compiler used to compile your applications must be compatible
with the C compiler used to build the CDF library. (Microsoft C and Microsoft Fortran have been shown in the

* The name of the Fortran compiler may be different depending on the favor of UNIX being used.

? This example assumes you have properly set the MS-DOS environment variables used by the Microsoft Fortran
compiler and linker. It is also assumed that the environment variables are set such that the linker will be able to find
both the Fortran and C run-time system libraries that are needed.

examples in this document.) The linker used must also be configured to allow a Fortran application to call C routines
(in the CDF library). Your Fortran applications, however, should not be concerned with calling functions written in C.
(They can assume that they are calling Fortran.) The CDF library is written to handle the default Fortran calling
conventions.

1.4 Windows NT/95/98 Systems, Digital Visual Fortran

An example of the command to compile a source file on Windows NT/95/98 systems using Digital Visual Fortran
would be as follows:*

> DF /c /iface:nomixed strfilesn arg /nowarn /optimize:0 /I<inc-path> <source-name>.f

where <source-name>.f is the name of the source file being compiled (the .f extension is required) and <inc-path> is
the file name of the directory containing cdfdvf.inc and cdfdf.inc. You will need to know where on your system
cdfdvf.inc and cdfdf.inc have been installed. <inc-path> may be either an absolute or relative file name.

The /c option specifies that only an object module is to be produced. (The link step is described in Chapter 2.) The
object module will be named <source-name>.obj.

The /iface:nomixed string length argument option specifies that Fortran string arguments will have their string lengths
appended to the end of the argument list by the compiler.

The /optimize:0 option specifies that no code optimization is done. We had a problem using the default optimization.
The /nowarn option specifies that no warning messages will be given.

You can run the batch files, DFVARS.BAT, came with the Digital Visual Fortran, to set them up.

1.5 Macintosh Systems, MPW Fortran

Macintosh Programmer's Workshop (MPW) Fortran uses a command line instruction to compile source files. This
command may be entered either on the MPW Worksheet or in an MPW makefile. An example of the command to
compile a source file using MPW Fortran would be as follows:

Fortran -i <inc-path> <source-name>.f

where <source-name>.f is the name of the source file being compiled and <inc-path> is an absolute or relative file
name of the folder containing cdf.inc. You will need to know where on your system cdf.inc has been installed. File
names on a Macintosh are constructed by separating volume/folder names with colons and terminating the file name
with a colon if it is a folder rather than a file (e.g., Disk1:cdf27-dist:include:). The name of the object module produced
will be <source-name>.f.0 in the current directory. Note that this example also assumes that <source-name>.f is in the
current directory.

* This example assumes you have properly set the MS-DOS environment variables used by the Digital Visual Fortran
compiler.

Chapter 2

Linking

Your applications must be linked with the CDF library.! Both the Standard and Internal interfaces for C applications
are built into the CDF library. On VMS systems a logical name, CDF$LIB, which specifies the location of the CDF
library, is defined in the definitions file, DEFINITIONS.COM, provided with the CDF distribution. On UNIX systems
an environment variable, CDF_LIB, which serves the same purpose, is defined in the definitions file definitions.<shell-
type> where <shell-type> is the type of shell being used: C for the C-shell (csh and tcsh), K for the Korn (ksh), BASH,
and POSIX shells, and B for the Bourne shell (sh). This section assumes that you are using the appropriate definitions
file on those systems. On MS-DOS and Macintosh (MacOS) systems, definitions files are not available. The location
of the CDF library is specified as described in the appropriate sections for those systems.

2.1 VAX/VMS & VAX/OpenVMS Systems

An example of the command to link your application with the CDF library (LIBCDF.OLB) on VAX/VMS and
VAX/OpenVMS systems would be as follows:

$ LINK <object-file(s)>, CDFSLIB:LIBCDF/LIBRARY
where<object-file(s)> is your application's object module(s). (The .OBJ extension is not necessary.) The name of the
executable created will be the name part of the first object file listed with .EXE appended. A different executable name
may be specified by using the EXECUTABLE qualifier.

It may also be necessary to specify SYSSLIBRARY:VAXCRTL/LIBRARY at the end of the LINK command if your
system does not properly define LNKSLIBRARY (or LNKSLIBRARY 1, etc.).

2.2 DEC Alpha/OpenVMS Systems

" A shareable version of the CDF library is also available on VMS and some flavors of UNIX. Its use is described in
Chapter 3. A dynamic link library (DLL), LIBCDF.DLL, is available on MS-DOS systems for Microsoft and Borland
Windows applications. Consult the Microsoft and Borland documentation for details on using a DLL. Note that the
DLL for Microsoft is created using Microsoft C 7.00.

An example of the command to link your application with the CDF library (LIBCDF.OLB) on DEC Alpha/OpenVMS
systems would be as follows:

$ LINK <object-file(s)>, CDFSLIB:LIBCDF/LIBRARY, SYSSLIBRARY:<crtl>/LIBRARY

where <object-file(s)> is your application's object module(s) (the .OBJ extension is not necessary) and <crtl> is
VAXCRTL if your CDF distribution is built for a default double-precision floating-point representation of G_ FLOAT
or VAXCRTLD for a default of D FLOAT. (You must specify a VAX C run-time library because the CDF library is
written in C.) The name of the executable created will be the name part of the first object file listed with .EXE
appended. A different executable name may be specified by using the /EXECUTABLE qualifier.

23 UNIX Systems

An example of the command to link your application with the CDF library (libcdf.a) on UNIX flavored systems would
be as follows:

$ £77 <object-file(s)>.o ${CDF_LIB}/libcdf.a
where <object-file(s)>.o is your application's object module(s). (The .o extension is required.) The name of the
executable created will be a.out by default. It may also be explicitly specified using the —o option. Some UNIX
systems may also require that -lc (the C run-time library), -Im (the math library), and/or -1dl (the dynamic linker
library) be specified at the end of the command line. This may depend on the particular release of the operating system
being used. Note that in a “makefile” where CDF LIB is imported, $(CDF LIB) would be specified instead of
${CDF_LIB}.

2.3.1 Combining the Compile and Link
On UNIX systems the compile and link may be combined into one step as follows:
$ £77 <source-file(s)>.f ${CDF_LIB}/libcdf.a
where <source-file(s)>.f is the name of the source file(s) being compiled/linked. (The .f extension is required.) Some

UNIX systems may also require that -lc, -Im, and/or -1d1 be specified at the end of the command line. Note that in a
“makefile” where CDF_LIB is imported, $(CDF_LIB) would be specified instead of ${CDF _LIB}.

24 MS-DOS Systems, Microsoft Fortran

NOTE: Even though your application is written in Fortran and compiled with a Fortran compiler, compatible C run-
time system libraries (as supplied with Microsoft C) will be necessary to successfully link your application. This is
because the CDF library is written in C and calls C run-time system functions.

An example of the command used to link an application to the CDF library (LIBCDF.LIB) on MS-DOS systems using
Microsoft Fortran and Microsoft C would be as follows:”

* This example assumes you have properly set the MS-DOS environment variables (e.g., INCLUDE and LIB) used by
the Microsoft Fortran (and Microsoft C) compiler and linker. Note that there are some differences between the
Microsoft C 6.00 and Microsoft C 7.00 run-time libraries (regarding system function names). The CDF distribution for

> LINK /NOI /NOD /NOE <objs>,<exe>,nul.map,<lib-path>l1ibcdf+LLIBCE+LLIBFORE;

where <objs> is your application's object module(s) (the .obj extension is not necessary); <exe> is the name of the
executable file to be created (.exe will be appended by default); and <lib-path> is the file name of the directory
containing LIBCDF.LIB. You will need to know where on your system LIBCDF.LIB has been installed. <lib-path>
may be either an absolute or relative file name.

A map file is created by default unless the special name nul.map is used (as shown). If a map file is desired, the map
file parameter should be omitted (in which case the name of the map file will be the name part of the executable file
with .map appended), or a map file should be explicitly specified.

The /NOE option specifies that the linker should not search extended dictionaries of library symbols. This is necessary
to suppress errors that would be generated because of multiply defined symbols between the Microsoft Fortran and
Microsoft C system libraries.

The /NOI option specifies that function names are to remain case-sensitive. The /NOD option specifies that the default
libraries (named in object files) should not be used. The needed libraries must instead be named in the link command.
The C run-time library shown, LLIBCE, and the Fortran run-time library shown, LLIBFORE, assume the large
memory model and emulated floating-point operations if a coprocessor does not exist at run-time. If Microsoft C 7.00
is being used with the CDF library built for Microsoft C 6.00, the library named OLDNAMES must also be specified
(immediately after LLIBCE) to handle the function naming differences between the Microsoft C 6.00 and Microsoft C
7.00 run-time libraries. NOTE: Specify the libraries in the order shown or errors involving multiply defined symbols
may result.

NOTE: The same memory model must have been used to compile your application's source files and the CDF library.
The CDF library for Microsoft Fortran supplied with the CDF distribution is compiled using the large memory model.
If you need to use the huge memory model for your application, you will also have to rebuild the CDF library for the
huge memory model.

You may instead want to use the Microsoft Programmer's Workbench (PWB) development environment to
compile/link you r applications. The options shown above for the command line linker are specified in the
development environment. Consult the documentation for the PWB for the steps necessary to compile/link you r
application.

2.5 Windows NT/95/98 Systems, Digital Visual Fortran

NOTE: Even though your application is written in Fortran and compiled with a Fortran compiler, compatible C run-
time system libraries (as supplied with Microsoft Visual C++) will be necessary to successfully link your application.
This is because the CDF library is written in C and calls C run-time system functions.

An example of the command used to link an application to the CDF library (LIBCDF.LIB) on Windows NT/95/98
systems using Digital Visual Fortran and Microsoft Visual C++ would be as follows:’

> LINK <objs> <lib-path>libcdf.lib /out:<name.exe> /nodefaultlib:libcd

MS-DOS is supplied with CDF libraries built for both Microsoft C 6.00 and Microsoft C 7.00. It is also assumed that
the appropriate CDF library was renamed to LIBCDF.LIB.

? This example assumes you have properly set the MS-DOS environment variables (e.g., LIB should be set to include
directories that contain C's LIBC.LIB and Fortran's DFOR.LIB.)

where <objs> is your application's object module(s) (the .obj extension is necessary); <name.exe> is the name of the
executable file to be created and <lib-path> is the file name of the directory containing LIBCDF.LIB. You will need to
know where on your system LIBCDF.LIB has been installed. <lib-path> may be either an absolute or relative file
name.

The /nodefaultlib:libcd option specifies that the LIBCD.LIB is to be ignored during the library search for resolving
references.

2.6 Macintosh Systems, MPW

Macintosh Programmer's Workshop (MPW) uses a command line instruction to link an application. This command
may be entered either on the MPW Worksheet or in an MPW makefile. An example of the command to link an
application with the CDF library (libcdf.o) using MPW would be as follows:

Link -t APPL -c '2???' -model far 9§

<object-file>.f.o <object-file>.f.o ... <object-file>.f.o &
<lib-path>libcdf.o 8

"{Flibraries}"FORTRANlibo 9§

"{CLibraries}"<c-1lib> "{CLibraries}"<c-1lib> ... "{CLibraries}"<c-1lib> &
"{Libraries}"<mac-1lib> "{Libraries}"<mac-1lib> ... "{Libraries}"<mac-1lib> 9§
-o <appl-path>

where <object-file>.cf.o is the name of one or more object modules being linked; <lib-path> is an absolute or relative
file name of the folder containing libcdf.o; <c-lib> is the name of one or more needed C libraries; <mac-lib> is the
name of one or more needed Macintosh libraries; and <appl-path> is the file name of the application being linked. You
will need to know where on you r system libcdf.o has been installed. File names on a Macintosh are constructed by
separating volume/folder names with colons and terminating the file name with a colon if it is a folder rather than a file
(e.g., Disk1:cdf27-dist:lib:). Note that this example assumes that <object-file>.f.o is in the current directory.

The C libraries that may be needed for the link are StdCLib.o, Math.o, and CSANELib.o. The Macintosh libraries that
may be needed are Runtime.o and Interface.o. Note that "{FLibraries}", "{CLibraries}", and "{Libraries}" are
predefined by MPW.

The -model far option indicates that the 32K restrictions on the size of code segments, the jump table, and the global
data area are to be removed. This option is necessary in order to successfully link to the CDF library provided for
MPW applications.

The CDF library does not use Macintosh resources. If your application uses resources, they must be compiled/linked as
described in the MPW documentation.

Chapter 3

Linking Shared CDF Library

A shareable version of the CDF library is also available on VMS systems, some flavors of UNIXI, Windows NT/95/98°
and Macintosh.” The shared version is put in the same directory as the non-shared version and is named as follows:

Machine/Operating System Shared CDF Library
VAX (VMS & OpenVMS) LIBCDF.EXE

DEC Alpha (OpenVMS) LIBCDF.EXE

Sun (SunOS) libcdf.so

Sun (SOLARIS) libedf.so

HP 9000 (HP-UX) libedfsl

IBM RS6000 (AIX) libcdf.o

DEC Alpha (OSF/1) libedf.so

SGi (IRIX 5.x & 6.x) libedf.so

Linux (PC & Power PC) libedf.so

Windows NT/95/98 dllcdf.dll

Macintosh (MacOS) dlledf.(ppc) & dllcdf.(68k)

The commands necessary to link to a shareable library vary among operating systems. Examples are shown in the
following sections.

3.1 VAX (VMS & OpenVMS)

$ ASSIGN CDFSLIB:LIBCDF.EXE CDFSLIBCDFEXE

$ LINK <object-file(s)>, SYSSINPUT:/OPTIONS
CDFS$SLIBCDFEXE/SHAREABLE
SYSSSHARE : VAXCRTL/SHAREABLE
<Control-7Z>

$ DEASSIGN CDFSLIBCDFEXE

' On UNIX systems, when executing a program linked to the shared CDF library, the environment variable
LD LIBRARY PATH must be set to include the directory containing libcdf.so or libedfsl.

> When executing a program linked to the dynamically linked CDF library (DLL), the environment variable PATH
must be set to include the directory containing dllcdf.dll.

? On Mac systems, when executing a program linked to the shared CDF library, dllcdf.ppc or dllcdf.68k must be copied
into System's Extension folder.

where<object-file(s)> is your application's object module(s). (The .OBJ extension is not necessary.) The name of the
executable created will be the name part of the first object file listed with .EXE appended. A different executable name
may be specified by using the / EXECUTABLE qualifier.

NOTE: on VAX/VMS and VAX/OpenVMS systems the shareable CDF library may also be installed in SYSSSHARE.
If that is the case, the link command would be as follows:

$ LINK <object-file(s)>, SYSSINPUT:/OPTIONS
SYSSSHARE : LIBCDF/SHAREABLE
SYSSSHARE : VAXCRTL/SHAREABLE
<Control-7Z>

3.2 DEC Alpha (OpenVMS)

$ ASSIGN CDFSLIB:LIBCDF.EXE CDFSLIBCDFEXE

$ LINK <object-file(s)>, SYSSINPUT:/OPTIONS
CDFS$SLIBCDFEXE/SHAREABLE
SYSSLIBRARY:<crtl>/LIBRARY
<Control-7Z>

$ DEASSIGN CDFSLIBCDFEXE

where <object-file(s)> is your application's object module(s) (the .OBJ extension is not necessary) and <crtl> is
VAXCRTL if your CDF distribution is built for a default double-precision floating-point representation of G_FLOAT
or VAXCRTLD for a default of D FLOAT or VAXCRTLT for a default of IEEE FLOAT. (You must specify a VAX
C run-time library [RTL] because the CDF library is written in C.) The name of the executable created will be the
name part of the first object file listed with .EXE appended. A different executable name may be specified by using the
/EXECUTABLE qualifier.

NOTE: on DEC Alpha/OpenVMS systems the shareable CDF library may also be installed in SYS$SHARE. If that is
the case, the link command would be as follows:

$ LINK <object-file(s)>, SYSSINPUT:/OPTIONS
SYSSSHARE : LIBCDF/SHAREABLE
SYSSLIBRARY:<crtl>/LIBRARY
<Control-7Z>

33 Sun (SunOYS)

$ £77 -o <exe-file> <object-file(s)>.o ${CDF _LIB}/libcdf.so -1lm -1dl

where <object-file(s)>.o0 is your application's object module(s) (the .o extension is required), and <exe-file> is the name
of the executable file created. Note that in a “makefile” where CDF_LIB is imported, $(CDF_LIB) would be specified
instead of ${CDF_LIB}. Also, -1dl may not be necessary on some SunOS systems.

34 SUN (SOLARIS)

$ £77 -o <exe-file> <object-file(s)>.o ${CDF_LIB}/libcdf.so -lc -1m

where <object-file(s)>.0 is your application's object module(s) (the .o extension is required) and <exe-file> is the name
of the executable file created. Note that in a “makefile” where CDF_LIB is imported, $(CDF_LIB) would be specified
instead of ${CDF_LIB}.

3.5 HP 9000 (HP-UX)

$ £77 -o <exe-file> <object-file(s)>.o ${CDF_LIB}/libcdf.sl -lc -1m

where <object-file(s)>.o0 is your application's object module(s) (the .o extension is required) and <exe-file> is the name
of the executable file created. Note that in a “makefile” where CDF_LIB is imported, $(CDF_LIB) would be specified
instead of ${CDF_LIB}.

3.6 IBM RS6000 (AIX)

$ £77 -o <exe-file> <object-file(s)>.o -L${CDF_LIB} ${CDF_LIB}/libcdf.o -lc -1lm

where <object-file(s)>.0 is your application's object module(s) (the .o extension is required) and <exe-file> is the name
of the executable file created. Note that in a “makefile” where CDF_LIB is imported, $(CDF_LIB) would be specified
instead of ${CDF_LIB}.

3.7 DEC Alpha (OSF/1)

$ £77 -o <exe-file> <object-file(s)>.o ${CDF LIB}/libcdf.so -1lm -lc
where <object-file(s)>.0 is your application's object module(s) (the .o extension is required) and <exe-file> is the name
of the executable file created. Note that in a “makefile” where CDF_LIB is imported, $(CDF_LIB) would be specified
instead of ${CDF_LIB}.

3.8 SGi (IRIX 5.x & 6.x)

$ £77 -o <exe-file> <object-file(s)>.o ${CDF _LIB}/libcdf.so -1lm -lc
where <object-file(s)>.0 is your application's object module(s) (the .o extension is required) and <exe-file> is the name
of the executable file created. Note that in a “makefile” where CDF_LIB is imported, $(CDF_LIB) would be specified
instead of ${CDF_LIB}.

3.9 Linux (PC & Power PC)

$ g77 -o <exe-file> <object-file(s)>.o ${CDF _LIB}/libcdf.so -1lm -lc

where <object-file(s)>.o0 is your application's object module(s) (the .o extension is required) and <exe-file> is the name
of the executable file created. Note that in a “makefile” where CDF_LIB is imported, $(CDF_LIB) would be specified
instead of ${CDF_LIB}.

3.10 Windows (NT/95/98)

% link /out:<exe-file>.exe <object-file(s)>.obj <lib-path>dllcdf.lib
/nodefaultlib:libcd

where <object-file(s)>.obj is your application's object module(s) (the .obj extension is required) and <exe-file>.exe is
the name of the executable file created, and <lib-path> may be either an absolute or relative directory name that has
dllcdf.lib. The environment variable LIB has to set to the directory that contains LIBC.LIB. Your PATH environment
variable needs to be set to include the directory that contains dllcdf.dll when the executable is run.

3.11 Macintosh (MacOS)

Two versions of dynamic link libraries are included in the distribution. One, dllcdf.PPC, is for the Power PC and the
other, dllcdf.68K, is for the 68K box. Copy the proper one to your System's Extension folder.

Chapter 4

Programming Interface

The following sections describe various aspects of the Fortran programming interface for CDF applications. These
include constants and types defined for use by all CDF application programs written in Fortran. These constants and
types are defined in cdfiinc. The file cdf.inc should be INCLUDE-ed in all application source files referencing CDF
routines/parameters.

4.1 Argument Passing

The CDF library is written entirely in C. Most computer systems have Fortran and C compilers that allow a Fortran
application to call a C function without being concerned that different programming languages are involved. The CDF
library takes advantage of the mechanisms provided by these compilers so that your Fortran application can appear to
be calling another Fortran subroutine/function (in actuality the CDF library written in C). Pass all arguments exactly as
shown in the description of each CDF function. This includes character strings (i.e., %REF(...) is not required). Be
aware, however, that trailing blanks on variable and attribute names will be considered as part of the name. If the
trailing blanks are not desired, pass only the part of the character string containing the name (e.g., VAR NAME(1:8)).

NOTE: Unfortunately, the Microsoft C and Microsoft Fortran compilers on the IBM PC and the C and Fortran
compilers on the NeXT computer do not provide the needed mechanism to pass character strings from Fortran to C
without explicitly NUL terminating the strings. Your Fortran application must place an ASCII NUL character after the
last character of a CDF, variable, or attribute name. An example of this follows:

CHARACTER ATTR NAME*9 ! Attribute name

ATTR NAME (1:8) = 'VALIDMIN' ! Actual attribute name
ATTR NAME (9:9) CHAR (0) ! ASCII NUL character

CHAR(0) is an intrinsic Fortran function that returns the ASCII character for the numerical value passed in (0 is the
numerical value for an ASCII NUL character). ATTR_NAME could then be passed to one of the CDF library
functions.

When the CDF library passes out a character string on an IBM PC (using the Microsoft compilers) or on a NeXT

computer, the number of characters written will be exactly as shown in the description of the function called. You must
declare your Fortran variable to be exactly that size.

4.2 Item Referencing

For Fortran applications all items are referenced starting at one (1). These include variable, attribute, and attribute
entry numbers, record numbers, dimensions, and dimension indices. Note that both rVariables and zVariables are
numbered starting at one (1).

4.3 Status Code Constants

These constants are of type INTEGER*4.
CDF _OK A status code indicating the normal completion of a CDF function.
CDF_WARN Threshold constant for testing severity of non-normal CDF status codes.

Chapter 7 describes how to use these constants to interpret status codes.

4.4 CDF Formats

SINGLE FILE The CDF consists of only one file. This is the default file format.

MULTI FILE The CDF consists of one header file for control and attribute data and one
additional file for each variable in the CDF.

4.5 CDF Data Types

One of the following constants must be used when specifying a CDF data type for an attribute entry or variable.

CDF BYTE 1-byte, signed integer.
CDF_CHAR 1-byte, signed character.
CDF _INTI 1-byte, signed integer.
CDF_UCHAR 1-byte, unsigned character.
CDF _UINT!1 1-byte, unsigned integer.
CDF_INT2 2-byte, signed integer.

CDF _UINT2 2-byte, unsigned integer.

CDF_INT4 4-byte, signed integer.
CDF _UINT4 4-byte, unsigned integer.
CDF_REAL4 4-byte, floating point.
CDF_FLOAT 4-byte, floating point.
CDF_REALS 8-byte, floating point.
CDF _DOUBLE 8-byte, floating point.
CDF_EPOCH 8-byte, floating point.

CDF _CHAR and CDF UCHAR are considered character data types. These are significant because only variables of
these data types may have more than one element per value (where each element is a character).

NOTE: When using a DEC Alpha running OSF/1 keep in mind that a long is 8 bytes and that an int is 4 bytes. Use int
C variables with the CDF data types CDF INT4 and CDF_UINT4 rather than long C variables.

NOTE: When using an PC (MS-DOS) keep in mind that an int is 2 bytes and that a long is 4 bytes. Use long C
variables with the CDF data types CDF _INT4 and CDF UINT4 rather than int C variables.

4.6 Data Encodings

A CDF's data encoding affects how its attribute entry and variable data values are stored (on disk). Attribute entry and
variable values passed into the CDF library (to be written to a CDF) should always be in the host machine's native
encoding. Attribute entry and variable values read from a CDF by the CDF library and passed out to an application
will be in the currently selected decoding for that CDF (see the Concepts chapter in the CDF User's Guide).

HOST_ENCODING Indicates host machine data representation (native). This is the default
encoding, and it will provide the greatest performance when
reading/writing on a machine of the same type.

NETWORK ENCODING Indicates network transportable data representation (XDR).

VAX ENCODING Indicates VAX data representation. Double-precision floating-point
values are encoded in Digital's D FLOAT representation.

ALPHAVMSd ENCODING Indicates DEC Alpha running OpenVMS data representation. Double-
precision floating-point values are encoded in Digital's D_FLOAT
representation.

ALPHAVMSg ENCODING Indicates DEC Alpha running OpenVMS data representation. Double-
precision floating-point values are encoded in Digital's G_FLOAT
representation.

ALPHAVMSi ENCODING Indicates DEC Alpha running OpenVMS data representation. Double-

precision floating-point values are encoded in IEEE representation.

ALPHAOSF1 ENCODING Indicates DEC Alpha running OSF/1 data representation.
SUN_ENCODING Indicates SUN data representation.
SGi_ENCODING Indicates Silicon Graphics Iris and Power Series data representation.

DECSTATION_ENCODING
Indicates DECstation data representation.

IBMRS_ENCODING Indicates IBMRS data representation (IBM RS6000 series).
HP_ENCODING Indicates HP data representation (HP 9000 series).
PC_ENCODING Indicates PC data representation.

NeXT ENCODING Indicates NeXT data representation.

MAC_ENCODING Indicates Macintosh data representation.

When creating a CDF (via the Standard interface) or respecifying a CDF's encoding (via the Internal Interface), you
may specify any of the encodings listed above. Specifying the host machine's encoding explicitly has the same effect
as specifying HOST ENCODING.

When inquiring the encoding of a CDF, either NETWORK ENCODING or a specific machine encoding will be
returned. (HOST _ENCODING is never returned.)

4.7 Data Decodings

A CDF's decoding affects how its attribute entry and variable data values are passed out to a calling application. The
decoding for a CDF may be selected and reselected any number of times while the CDF is open. Selecting a decoding
does not affect how the values are stored in the CDF file(s) - only how the values are decoded by the CDF library. Any
decoding may be used with any of the supported encodings. The Concepts chapter in the CDF User's Guide describes a
CDF's decoding in more detail.

HOST_DECODING Indicates host machine data representation (native). This is the default
decoding.

NETWORK DECODING Indicates network transportable data representation (XDR).

VAX DECODING Indicates VAX data representation. Double-precision floating-point
values will be in Digital's D FLOAT representation.

ALPHAVMSd DECODING Indicates DEC Alpha running OpenVMS data representation. Double-
precision floating-point values will be in Digital's D FLOAT
representation.

ALPHAVMSg DECODING Indicates DEC Alpha running OpenVMS data representation. Double-
precision floating-point values will be in Digital's G _FLOAT
representation.

ALPHAVMSi DECODING Indicates DEC Alpha running OpenVMS data representation. Double-
precision floating-point values will be in IEEE representation.

ALPHAOSF1 DECODING Indicates DEC Alpha running OSF/1 data representation.
SUN_DECODING Indicates SUN data representation.

SGi_ DECODING Indicates Silicon Graphics Iris and Power Series data representation.
DECSTATION_DECODING Indicates DECstation data representation.

IBMRS_ DECODING Indicates IBMRS data representation (IBM RS6000 series).
HP_DECODING Indicates HP data representation (HP 9000 series).
PC_DECODING Indicates PC data representation.

NeXT DECODING Indicates NeXT data representation.

MAC_DECODING Indicates Macintosh data representation.

The default decoding is HOST DECODING. The other decodings may be selected via the Internal Interface with the
<SELECT ,CDF DECODING > operation. The Concepts chapter in the CDF User's Guide describes those situations
in which a decoding other than HOST DECODING may be desired.

4.8. Variable Majorities

A CDF's variable majority determines the order in which variable values (within the variable arrays) are stored in the
CDF file(s). The majority is the same for rVariable and zVariables.

ROW_MAJOR C-like array ordering for variable storage. The first dimension in each
variable array varies the slowest. This is the default majority.

COLUMN_MAJOR Fortran-like array ordering for variable storage. The first dimension in
each variable array varies the fastest.

Knowing the majority of a CDF's variables is necessary when performing hyper reads and writes. During a hyper read
the CDF library will place the variable data values into the memory buffer in the same majority as that of the variables.
The buffer must then be processed according to that majority. Likewise, during a hyper write, the CDF library will
expect to find the variable data values in the memory buffer in the same majority as that of the variables.

The majority must also be considered when performing sequential reads and writes. When sequentially reading a
variable, the values passed out by the CDF library will be ordered according to the majority. When sequentially
writing a variable, the values passed into the CDF library are assumed (by the CDF library) to be ordered according to
the majority.

As with hyper reads and writes, the majority of a CDF's variables affects multiple variable reads and writes. When
performing a multiple variable write, the full-physical records in the buffer passed to the CDF library must have the
CDF's variable majority. Likewise, the full-physical records placed in the buffer by the CDF library during a multiple
variable read will be in the CDF's variable majority.

For Fortran applications the compiler defined majority for arrays is column major. The first dimension of multi-
dimensional arrays varies the fastest in memory.

4.9 Record/Dimension Variances

Record and dimension variances affect how variable data values are physically stored.
VARY True record or dimension variance.
NOVARY False record or dimension variance.

If a variable has a record variance of VARY, then each record for that variable is physically stored. If the record
variance is NOVARY, then only one record is physically stored. (All of the other records are virtual and contain the
same values.)

If a variable has a dimension variance of VARY, then each value/subarray along that dimension is physically stored. If
the dimension variance is NOVARY, then only one value/subarray along that dimension is physically stored. (All
other values/subarrays along that dimension are virtual and contain the same values.)

4.10 Compressions

The following types of compression for CDFs and variables are supported. For each, the required parameters are also
listed. The Concepts chapter in the CDF User's Guide describes how to select the best compression type/parameters for
a particular data set.

NO_COMPRESSION No compression.
RLE_COMPRESSION Run-length encoding compression. There is one parameter.

1. The style of run-length encoding. Currently, only the run-length
encoding of zeros is supported. This parameter must be set to
RLE OF ZEROs.

HUFF_COMPRESSION Huffman compression. There is one parameter.

1. The style of Huffman encoding. Currently, only optimal encoding
trees are supported. An optimal encoding tree is determined for each
block of bytes being compressed. This parameter must be set to
OPTIMAL _ENCODING_TREES.

AHUFF_COMPRESSION Adaptive Huffman compression. There is one parameter.

1. The style of adaptive Huffman encoding. Currently, only optimal
encoding trees are supported. An optimal encoding tree is determined
for each block of bytes being compressed. This parameter must be set
to OPTIMAL_ENCODING_TREES.

GZIP_COMPRESSION Gnu's “zip" cornpression.1 There is one parameter.
1. The level of compression. This may range from 1 to 9. 1 provides the
least compression and requires less execution time. 9 provides the

most compression but requires the most execution time. Values in-
between provide varying compromises of these two extremes.

4.11 Sparseness

4.11.1 Sparse Records

The following types of sparse records for variables are supported.
NO_SPARSERECORDS No sparse records.

PAD SPARSERECORDS Sparse records - the variable's pad value is used when reading values from
a missing record.

PREV_SPARSERECORDS Sparse records - values from the previous existing record are used when

reading values from a missing record. If there is no previous existing
record the variable's pad value is used.

4.11.2 Sparse Arrays
The following types of sparse arrays for variables are supported.”

NO_SPARSEARRAYS No sparse arrays.

4.12 Attribute Scopes

Attribute scopes are simply a way to explicitly declare the intended use of an attribute by user applications (and the
CDF toolkit).

GLOBAL_SCOPE Indicates that an attribute's scope is global (applies to the CDF as a
whole).
VARIABLE SCOPE Indicates that an attribute's scope is by-variable. (Each rEntry or zEntry

corresponds to an rVariable or zVariable, respectively.)

' Disabled for PC running 16-bit DOS/Windows 3.x.
? Obviously, sparse arrays are not yet supported.

4.13 Read-Only Modes

Once a CDF has been opened, it may be placed into a read-only mode to prevent accidental modification (such as when
the CDF is simply being browsed). Read-only mode is selected via the Internal Interface using the
<SELECT ,CDF_READONLY_ MODE > operation.

READONLYon Turns on read-only mode.

READONLY off Turns off read-only mode.

4.14 zModes

Once a CDF has been opened, it may be placed into one of two variations of zMode. zMode is fully explained in the
Concepts chapter in the CDF User's Guide. A zMode is selected for a CDF via the Internal Interface using the
<SELECT_,CDF zMODE > operation.

zMODEoff Turns off zMode.
zMODEonl1 Turns on zMode/1.
zMODEon2 Turns on zMode/2.

4.15 -0.0 to 0.0 Modes

Once a CDF has been opened, the CDF library may be told to convert -0.0 to 0.0 when read from or written to that
CDF. This mode is selected via the Internal Interface using the <SELECT ,CDF NEGtoPOSfp0 MODE > operation.

NEGtoPOS{pOon Convert -0.0 to 0.0 when read from or written to a CDF.

NEGtoPOS{pOoff Do not convert -0.0 to 0.0 when read from or written to a CDF.

4.16 Operational Limits

These are limits within the CDF library. If you reach one of these limits, please contact CDF User Support.
CDF_MAX DIMS Maximum number of dimensions for the rVariables or a zVariable.
CDF_MAX PARMS Maximum number of compression or sparseness parameters.

The CDF library imposes no limit on the number of variables, attributes, or attribute entries that a CDF may have. On

the PC, however, the number of rVariables and zVariables will be limited to 100 of each in a multi-file CDF because of
the 8.3 naming convention imposed by MS-DOS.

20

4.17 Limits of Names and Other Character Strings

CDF_PATHNAME_LEN

CDF_VAR_NAME_LEN
CDF_ATTR_NAME_LEN
CDF_COPYRIGHT LEN

CDF_STATUSTEXT LEN

Maximum length of a CDF file name (excluding the .cdf or .vnn appended
by the CDF library to construct file names). A CDF file name may
contain disk and directory specifications that conform to the conventions
of the operating systems being used (including logical names on VMS
systems and environment variables on UNIX systems).

Maximum length of a variable name.

Maximum length of an attribute name.

Maximum length of the CDF copyright text.

Maximum length of the explanation text for a status code.

21

M

Chapter 5

Standard Interface

The following sections describe the Standard Interface routines callable from Fortran applications. Most functions
return a status code of type INTEGER*4 (see Chapter 7). The Internal Interface is described in Chapter 6. An
application can use both interfaces when necessary. Note that zVariables and vAttribute zEntries are only accessible
via the Internal Interface.

5.1 CDF _create

SUBROUTINE CDF _create (

CHARACTER CDF_name*(*), !in -- CDF file name.

INTEGER*4 num_dims, !in -- Number of dimensions, rVariables.
INTEGER*4 dim_sizes(*), l'in -- Dimension sizes, rVariables.
INTEGER*4 encoding, l'in -- Data encoding.

INTEGER*4 majority, lin -- Variable majority.

INTEGER*4 id, ! out -- CDF identifier.

INTEGER*4 status) ! out -- Completion status

CDF create creates a CDF as defined by the arguments. A CDF cannot be created if it already exists. (The existing
CDF will not be overwritten.) If you want to overwrite an existing CDF, you must first open it with CDF_open, delete
it with CDF_delete, and then recreate it with CDF create. If the existing CDF is corrupted, the call to CDF _open will
fail. (An error code will be returned.) In this case you must delete the CDF at the command line. Delete the dotCDF
file (having an extension of .cdf), and if the CDF has the multi-file format, delete all of the variable files (having
extensions of .v0,.v1,. .. and .z0,.z1,.. .).

The arguments to CDF_create are defined as follows:

CDF_name The file name of the CDF to create. (Do not specify an extension.) This may be at most
CDF PATHNAME LEN characters. A CDF file name may contain disk and directory
specifications that conform to the conventions of the operating system being used (including
logical names on VMS systems and environment variables on UNIX systems).

UNIX: File names are case-sensitive.
num_dims Number of dimensions the rVariables in the CDF are to have. This may be as few as zero

(0) and at most CDF MAX DIMS.

PR

dim_sizes The size of each dimension. Each element of dim sizes specifies the corresponding
dimension size. Each size must be greater then zero (0). For 0-dimensional rVariables this
argument is ignored (but must be present).

encoding The encoding for variable data and attribute entry data. Specify one of the encodings
described in Section 4.6.

majority The majority for variable data. Specify one of the majorities described in Section 4.8.

id The identifier for the created CDF. This identifier must be used in all subsequent operations
on the CDF.

status The completion status code. Chapter 7 explains how to interpret status codes.

When a CDF is created, both read and write access are allowed. The default format for a CDF created with
CDF create is specified in the configuration file of your CDF distribution. Consult your system manager for this
default. The CDF _lib function (Internal Interface) may be used to change a CDF's format.

NOTE: CDF close must be used to close the CDF before your application exits to ensure that the CDF will
be correctly written to disk (see Section 5.5).

5.1.1 Example(s)

The following example will create a CDF named test] with network encoding and row majority.

INCLUDE '<path>cdf.inc'

INTEGER*4 id ! CDF identifier.

INTEGER*4 status ! Returned status code.

INTEGER*4 num_dims ! Number of dimensions, rVariables.
INTEGER*4 dim sizes(3) ! Dimension sizes, rVariables.
INTEGER*4 majority ! Variable majority.

DATA num dims/3/, dim sizes/180,360,10/, majority/ROW MAJOR/

CALL CDF _create ('testl', num dims, dim sizes, NETWORK ENCODING,
1 majority, id, status)
IF (status .NE. CDF OK) CALL UserStatusHandler (status)

ROW_MAJOR and NETWORK ENCODING are defined in cdf.inc.

24

5.2 CDF_open

SUBROUTINE CDF_open (

CHARACTER CDF_name*(*), ! in -- CDEF file name.

INTEGER*4
INTEGER*4

! out-- CDF identifier.
! out -- Completion status

CDF open opens an existing CDF. The CDF is initially opened with only read access. This allows multiple
applications to read the same CDF simultaneously. When an attempt to modify the CDF is made, it is automatically
closed and reopened with read/write access. (The function will fail if the application does not have or cannot get write

access to the CDF.)

The arguments to CDF_open are defined as follows:

CDF_name

id

status

The file name of the CDF to open. (Do not specify an extension.) This may be at most
CDF PATHNAME LEN characters. A CDF file name may contain disk and directory
specifications that conform to the conventions of the operating system being used (including
logical names on VMS systems and environment variables on UNIX systems).

UNIX: File names are case-sensitive.

The identifier for the opened CDF. This identifier must be used in all subsequent operations
on the CDF.

The completion status code. Chapter 7 explains how to interpret status codes.

NOTE: CDF close must be used to close the CDF before your application exits to ensure that the CDF will be
correctly written to disk (see Section 5.5).

5.2.1 Example(s)

The following example will open a CDF named NOAAI.

INCLUDE '<path>cdf.inc'

INTEGER*4 id
INTEGER*4 status

! CDF identifier.
! Returned status code.

CHARACTER CDF name* (CDF_PATHNAME LEN) ! File name of CDF.

DATA CDF name/'NOAAL'/

CALL CDF _open (CDF name, 1id, status)

IF (status

.NE. CDF_OK) CALL UserStatusHandler (status)

A

5.3 CDF _doc

SUBROUTINE CDF_doc (

INTEGER*4 id,

INTEGER*4 version,

INTEGER*4 release,

CHARACTER copy_right*(CDF_COPYRIGHT LEN),
INTEGER*4 status)

in -- CDF identifier.
out -- Version number.
out -- Release number.
out -- Copyright.

out -- Completion status

CDF _doc is used to inquire general documentation about a CDF. The version/release of the CDF library that created
the CDF is provided (e.g., CDF V2.4 is version 2, release 4) along with the CDF copyright notice.

The arguments to CDF_doc are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create
or CDF_open.

version The version number of the CDF library that created the CDF.

release The release number of the CDF library that created the CDF.

copy_right The copyright notice of the CDF library that created the CDF. This character string must be

large enough to hold CDF COPYRIGHT LEN characters and will be blank padded if
necessary. This string will contain a newline character after each line of the copyright
notice.

status The completion status code. Chapter 7 explains how to interpret status codes.

The copyright notice is formatted for printing without modification. The version and release are used together (e.g.,
CDF V2.4 is version 2, release 4).

5.3.1 Example(s)

The following example will inquire and display the version/release and copyright notice.

INCLUDE '<path>cdf.inc'

INTEGER*4 id

INTEGER*4 status

INTEGER*4 version

INTEGER*4 release

CHARACTER copyright* (CDF_COPYRIGHT_LEN)
INTEGER*4 last char

CDF identifier.
Returned status code.
CDF version number.
CDF release number.
Copyright notice.
! Last character position
! actually used in the copyright.
INTEGER*4 start char ! Starting character position
|
|

ina line of the copyright.

CHARACTER 1f*1 Linefeed character.

A

CALL CDF _doc (id, version, release, copyright, status)
IF (status .LT. CDF OK) THEN ! INFO status codes ignored
CALL UserStatusHandler (status)

ELSE
WRITE (6,101) version, release
101 FORMAT (' ', 'Version: ',I3,' Release:',6b1I3)
last_CHARACTER= CDF_ COPYRIGHT LEN
DO WHILE (copyright(last char:last char) .EQ. ' ')
last_CHARACTER= last_CHARACTER— 1
END DO

1f = CHAR(10)
start CHARACTER= 1
DO i = 1, last char
IF (copyright(i:i) .EQ. 1f) THEN
WRITE (6,301) copyright(start char:i-1)

301 FORMAT (' ',A)
start CHARACTER= i + 1
END IF
END DO
END IF

5.4 CDF _inquire

SUBROUTINE CDF _inquire(

in -- CDF identifier

out -- Number of dimensions, rVariables.

out -- Dimension sizes, rVariables.

out -- Data encoding.

out -- Variable majority.

out -- Maximum record number in the CDF, rVariables.
out -- Number of rVariables in the CDF.

out -- Number of attributes in the CDF.

out -- Completion status

INTEGER*4 id,

INTEGER*4 num_dims,

INTEGER*4 dim_sizes(CDF_MAX DIMS),
INTEGER*4 encoding,

INTEGER*4 majority,

INTEGER*4 max_rec,

INTEGER*4 num vars,

INTEGER*4 num_attrs,

INTEGER*4 status)

CDF inquire inquires the basic characteristics of a CDF. An application needs to know the number of rVariable
dimensions and their sizes before it can access rVariable data. Knowing the variable majority can be used to optimize
performance and is necessary to properly use the variable hyper functions (for both rVariables and zVariables).

The arguments to CDF _inquire are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDF _create or CDF_open.

num_dims The number of dimensions for the rVariables in the CDF.

dim_sizes The dimension sizes of the rVariables in the CDF. dim_sizes is a 1-dimensional array
containing one element per dimension. Each element of dim_sizes receives the

27

encoding

majority

max_rec

num_vars
num_attrs

status

corresponding dimension size. For 0-dimensional rVariables this argument is ignored (but
must be present).

The encoding of the variable data and attribute entry data. The encodings are defined in
Section 4.6.

The majority of the variable data. The majorities are defined in Section 4.8.

The maximum record number written to an rVariable in the CDF. Note that the maximum
record number written is also kept separately for each rVariable in the CDF. The value of
max_rec is the largest of these. Some rVariables may have fewer records actually written.
CDF lib (Internal Interface) may be used to inquire the maximum record written for an
individual rVariable (see Section 6).

The number of rVariables in the CDF.

The number of attributes in the CDF.

The completion status code. Chapter 7 explains how to interpret status codes.

5.4.1 Example(s)

The following example will inquire the basic information about a CDF.

INCLUDE '<path>cdf.inc'

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

CDF identifier.

Returned status code.

Number of dimensions, rVariables.
Dimension sizes, rVariables
(allocate to allow the maximum

id !
|
|
|
|
! number of dimensions).
|
|
|
|
|

status
num_dims
dim sizes (CDF_MAX DIMS)

encoding Data encoding.
majority Variable majority.
max_rec Maximum record number.

Number of rVariables in CDF.
Number of attributes in CDF.

num_vars
num_attrs

CALL CDF_inquire (id, num dims, dim sizes, encoding, majority,

max_rec,

IF (status

num vars, num attrs, status)

.NE. CDF_OK) CALL UserStatusHandler (status)

5.5 CDF _close

SUBROUTINE CDF _close (

7R

INTEGER*4 id, ! in -- CDF identifier.
INTEGER*4 status) ! out -- Completion status

CDF _close closes the specified CDF. The CDF's cache buffers are used; the CDF's open file is closed (or files in the
case of a multi-file CDF); and the CDF identifier is made available for reuse.

NOTE: You must close a CDF with CDF close to guarantee that all modifications you have made will actually be
written to the CDEF's file(s). If your program exits, normally or otherwise, without a successful call to CDF_close, the

CDF's cache buffers are left unused.

The arguments to CDF_close are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF create or
CDF _open.
status The completion status code. Chapter 7 explains how to interpret status codes.

5.5.1 Example(s)

The following example will close an open CDF.

INCLUDE '<path>cdf.inc'

INTEGER*4 id ! CDF identifier.
INTEGER*4 status ! Returned status code.

CALL CDF _close (id, status)
IF (status .NE. CDF OK) CALL UserStatusHandler (status)

5.6 CDF _delete

SUBROUTINE CDF_delete (

INTEGER*4 id, ! in -- CDF identifier.
INTEGER*4 status) ! out -- Completion status

CDF delete deletes the specified CDF. The CDF files deleted include the dotCDF file (having an extension of .cdf),
and if a multi-file CDF, the variable files (having extensions of .v0,.v1,. . . and .z0,.z1,.. .).

You must open a CDF before you are allowed to delete it. If you have no privilege to delete the CDF files, they will
not be deleted. If the CDF is corrupted and cannot be opened, the CDF file(s) must be deleted at the command line.

The arguments to CDF_delete are defined as follows:

70

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create or
CDF _open.

status The completion status code. Chapter 7 explains how to interpret status codes.
5.6.1 Example(s)

The following example will open and then delete an existing CDF.

INCLUDE '<path>cdf.inc'

INTEGER*4 id ! CDF identifier.
INTEGER*4 status ! Returned status code.

CALL CDF _open ('test2', id, status)

IF (status .LT. CDF OK) THEN ! INFO status codes ignored.
CALL UserStatusHandler (status)

ELSE
CALL CDF _delete (id, status)
IF (status .NE. CDF OK) CALL UserStatusHandler (status)

END IF

5.7 CDF _error

SUBROUTINE CDF _error (

INTEGER*4 status, ! in -- Status code.
CHARACTER message*(CDF_STATUSTEXT LEN)) ! out -- Explanation text for the status code.

CDF _error is used to inquire the explanation of a given status code (not just error codes). Chapter 7 explains how to
interpret status codes and Appendix A lists all of the possible status codes.

The arguments to CDF _error are defined as follows:
status The status code to check.

message The explanation of the status code. This character string must be large enough to hold
CDF_STATUSTEXT LEN characters and will be blank padded if necessary.

5.7.1 Example(s)

The following example displays the explanation text if an error code is returned from a call to CDF_open.

20N

INCLUDE '<path>cdf.inc'

CDF identifier.

Returned status code.
Explanation text.

Last character position
actually used in the copyright.

INTEGER*4 id

INTEGER*4 status

CHARACTER text* (CDF_STATUSTEXT LEN)
INTEGER*4 last char

CALL CDF open ('giss_ wetl', id, status)
IF (status .LT. CDF_WARN) THEN ! INFO and WARNING codes ignored.
CALL CDF _error (status, text)
last_CHARACTER= CDF_STATUSTEXT_LEN
DO WHILE (text(last char:last char) .EQ. ' ')
last_CHARACTER= last_CHARACTER— 1

END DO
WRITE (6,101) text(l:last char)
101 FORMAT (' ', 'ERROR> ',A)
END IF

5.8 CDF _attr_create

SUBROUTINE CDF _attr create (

INTEGER*4 id,
CHARACTER attr_name®*(*),
INTEGER*4 attr_scope,
INTEGER*4 attr num,
INTEGER*4 status)

in -- CDF identifier.
in -- Attribute name.
in -- Scope of attribute.
out -- Attribute number.
out -- Completion status

CDF attr create creates an attribute in the specified CDF. An attribute with the same name must not already exist in
the CDF.

The arguments to CDF _attr create are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDF _create or CDF_open.

attr_ name The name of the attribute to create. This may be at most CDF ATTR NAME LEN
characters. Attribute names are case-sensitive.

attr_scope The scope of the new attribute. Specify one of the scopes described in Section 4.12.

attr num The number assigned to the new attribute. This number must be used in subsequent CDF

function calls when referring to this attribute. An existing attribute's number may be
determined with the CDF_attr num function.

status The completion status code. Chapter 7 explains how to interpret status codes.

21

5.8.1 Example(s)

The following example creates two attributes. The TITLE attribute is created with global scope - it applies to the entire
CDF (most likely the title of the data set stored in the CDF). The Units attribute is created with variable scope - each
entry describes some property of the corresponding variable (in this case the units for the data).

INCLUDE '<path>cdf.inc'

INTEGER*4 id ! CDF identifier.

INTEGER*4 status ! Returned status code.
CHARACTER UNITS attr name*5 ! Name of "Units" attribute.
INTEGER*4 UNITS attr num ! "Units" attribute number.
INTEGER*4 TITLE attr num ! "TITLE" attribute number.
INTEGER*4 TITLE attr scope ! "TITLE" attribute scope.

DATA UNITS attr name/'Units'/, TITLE attr scope/GLOBAL SCOPE/

CALL CDF _attr create (id, 'TITLE', TITLE attr scope, TITLE attr num, status)
IF (status .NE. CDF OK) CALL UserStatusHandler (status)

CALL CDF_attr create (id, UNITS attr name, VARIABLE SCOPE, UNITS attr num,
1 status)

IF (status .NE. CDF OK) CALL UserStatusHandler (status)

5.9 CDF _attr_num

INTEGER*4 FUNCTION CDF _attr num (

INTEGER*4 id, !'in-- CDF id
CHARACTER attr_name*(¥)); ! in-- attribute name

CDF _attr num is used to determine the attribute number associated with a given attribute name. If the attribute is
found, CDF attr num returns its number - which will be equal to or greater than one (1). If an error occurs (e.g., the
attribute name does not exist in the CDF), an error code (of type INTEGER*4) is returned. Error codes are less than
zero (0).

The arguments to CDF_attr num are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create
or CDF_open.
attr name The name of the attribute for which to search. This may be at most

CDF_ATTR NAME LEN characters. Attribute names are case-sensitive.

22

CDF attr num may be used as an embedded function call when an attribute number is needed. CDF _attr num is
declared in cdf.inc. (Fortran functions must be declared so that the returned value is interpreted correctly.)

5.9.1 Example(s)
In the following example the attribute named pressure will be renamed to PRESSURE with CDF _attr num being used
as an embedded function call. Note that if the attribute pressure did not exist in the CDF, the call to CDF_attr num

would have returned an error code. Passing that error code to CDF _attr rename as an attribute number would have
resulted in CDF_attr rename also returning an error code. CDF _attr rename is described in Section 5.10.

INCLUDE '<path>cdf.inc'

INTEGER*4 id ! CDF identifier.
INTEGER*4 status ! Returned status code.

CALL CDF_attr rename (id, CDF _attr num(id, 'pressure'), 'PRESSURE', status)
IF (status .NE. CDF OK) CALL UserStatusHandler (status)

5.10 CDF_attr_rename

SUBROUTINE CDF _attr rename (

INTEGER*4 id, in -- CDF identifier.

!
INTEGER*4 attr num, ! in -- Attribute number.
CHARACTER attr_name®*(*), ! in -- New attribute name.
INTEGER*4 status) ! out -- Completion status

CDF attr rename is used to rename an existing attribute. An attribute with the new name must not already exist in the
CDF.

The arguments to CDF_attr rename are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create
or CDF_open.
attr num The number of the attribute to rename. This number may be determined with a call to

CDF _attr num (see Section 5.9).

attr_ name The new attribute name. This may be at most CDF_ ATTR NAME LEN characters.
Attribute names are case-sensitive.

status The completion status code. Chapter 7 explains how to interpret status codes.

5.10.1 Example(s)

27

In the following example the attribute named LAT is renamed to LATITUDE.

INCLUDE '<path>cdf.inc'

INTEGER*4 id

INTEGER*4 status

! CDF identifier.
! Returned status code.

CALL CDF_attr rename (id, CDF_attr num(id, 'LAT'), 'LATITUDE', status)

IF (status .NE.

CDF _OK) CALL UserStatusHandler (status)

5.11 CDF_attr_inquire

SUBROUTINE CDF _attr_inquire (

INTEGER*4 id,
INTEGER*4 attr num,

CHARACTER attr_name*(CDF_ATTR_NAME_LEN),

INTEGER*4 attr_scope,
INTEGER*4 max_entry,
INTEGER*4 status)

in -- CDF identifier.

in -- Attribute number.

out -- Attribute name.

out -- Attribute scope.

out -- Maximum gEntry or rEntry number.
out -- Completion status

CDF attr_inquire is used to inquire about the specified attribute. to inquire about a specific attribute entry, use
CDF attr_entry inquire (Section 5.12).

The arguments to CDF _attr inquire are defined as follows:

id

attr num

attr_name

attr_scope

max_entry

status

5.11.1 Example(s)

The identifier of the CDF. This identifier must have been initialized by a call to
CDF _create or CDF_open.

The number of the attribute to inquire. This number may be determined with a call to
CDF _attr num (see Section 5.9).

The attribute's name. This character string must be large enough to hold
CDF_ATTR NAME LEN characters and will be blank padded if necessary.

The scope of the attribute. Attribute scopes are defined in Section 4.12.

For gAttributes this is the maximum gEntry number used. For vAttributes this is the
maximum rEntry number used. in either case this may not correspond with the number of
entries (if some entry numbers were not used). The number of entries actually used may be
inquired with the CDF _lib function (see Section 6). If no entries exist for the attribute,

then a value of zero (0) will be passed back.

The completion status code. Chapter 7 explains how to interpret status codes.

R4

The following example displays the name of each attribute in a CDF. The number of attributes in the CDF is first
determined using the function CDF _inquire. Note that attribute numbers start at one (1) and are consecutive.

INCLUDE '<path>cdf.inc'

CDF identifier.

Returned status code.

Number of dimensions.
Dimension sizes (allocate to
allow the maximum number of

INTEGER*4 id !
|
|
|
|
! dimensions) .
|
|
|
|
|
|

INTEGER*4 status
INTEGER*4 num_dims
INTEGER*4 dim_sizes(CDF_MAX_DIMS)

INTEGER*4 encoding
INTEGER*4 majority
INTEGER*4 max rec
INTEGER*4 num vars
INTEGER*4 num_attrs
INTEGER*4 attr n ! Attribute number.
CHARACTER attr name* (CDF_ATTR NAME LEN)! Attribute name.
INTEGER*4 attr scope ! Attribute scope.
INTEGER*4 max entry ! Maximum entry number.

Data encoding.

Variable majority.

Maximum record number in CDF.
Number of variables in CDF.
Number of attributes in CDF.

CALL CDF_inquire (id, num dims, dim sizes, encoding, majority,

1 max rec, num vars, num attrs, status)
IF (status .NE. CDF OK) CALL UserStatusHandler (status)
DO attr n = 1, num attrs
CALL CDF_attr inquire (id, attr n, attr name, attr scope, max entry,
1 status)
IF (status .LT. CDF_OK) THEN ! INFO status codes ignored.
CALL UserStatusHandler (status)
ELSE
WRITE (6,10) attr name
10 FORMAT (' ',A)
END IF
END DO

5.12 CDF_attr_entry_inquire

SUBROUTINE CDF _attr entry inquire (

in -- CDF identifier.

in -- Attribute number.

in -- Entry number.

out -- Data type.

out -- Number of elements (of the data type).
out -- Completion status

INTEGER*4 id,
INTEGER*4 attr num,
INTEGER*4 entry num,
INTEGER*4 data_type,
INTEGER*4 num_elements,
INTEGER*4 status)

25

CDF attr entry inquire is used to inquire about a specific attribute entry. to inquire about the attribute in general, use
CDF attr _inquire (see Section 5.11). CDF attr entry inquire would normally be called before calling CDF _attr get in
order to determine the data type and number of elements (of that data type) for an entry. This would be necessary to
correctly allocate enough memory to receive the value read by CDF _attr get.

The arguments to CDF _attr_entry inquire are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDF _create or CDF_open.

attr num The attribute number for which to inquire an entry. This number may be determined
with a call to CDF_attr num (see Section 5.9).

entry num The entry number to inquire. If the attribute is global in scope, this is simply the gEntry
number and has meaning only to the application. If the attribute is variable in scope, this
is the number of the associated rVariable (the rVariable being described in some way by

the rEntry).
data_type The data type of the specified entry. The data types are defined in Section 4.5.
num_elements The number of elements of the data type. For character data types (CDF_CHAR and

CDF_UCHAR), this is the number of characters in the string (an array of characters).
For all other data types this is the number of elements in an array of that data type.

status The completion status code. Chapter 7 explains how to interpret status codes.

5.12.1 Example(s)

The following example inquires each entry for an attribute. Note that entry numbers need not be consecutive - not
every entry number between one (1) and the maximum entry number must exist. For this reason NO_SUCH_ENTRY
is an expected error code. Note also that if the attribute has variable scope, the entry numbers are actually rVariable
numbers.

INCLUDE '<path>cdf.inc'

CDF identifier.

Returned status code.
Attribute number.

Entry number.

Attribute name.

Attribute scope.

Maximum entry number used.

INTEGER*4 id

INTEGER*4 status

INTEGER*4 attr n

INTEGER*4 entryN

CHARACTER attr name* (CDF_ATTR NAME LEN)
INTEGER*4 attr scope

INTEGER*4 max entry

INTEGER*4 data type Data type.
INTEGER*4 num_elems Number of elements (of the
data type).

attr n = CDF_attr num (id, 'TMP'")
IF (attr n .LT. 1) CALL UserStatusHandler (attr n) ! If less than one (1),
! then it must be a
! warning/error code.
CALL CDF_attr inquire (id, attr n, attr name, attr scope, max entry, status)
IF (status .NE. CDF OK) CALL UserStatusHandler (status)

A

DO entryN = 1, max entry
CALL CDF_attr entry inquire (id, attr n, entryN, data type, num elems,

1

IF (status .LT.
IF (status

ELSE

status)
CDF_OK) THEN
.NE. NO SUCH ENTRY) CALL UserStatusHandler (status)

C (process entries)

END IF
END DO

5.13 CDF_attr_put

SUBROUTINE CDF _attr_put (

INTEGER*4 id,
INTEGER*4 attr num,
INTEGER*4 entry num,
INTEGER*4 data_type,
INTEGER*4 num_elements,
<type> value,
INTEGER*4 status)

in -- CDF identifier.

in -- Attribute number.

in -- Entry number.

in -- Data type of this entry.

in -- Number of elements (of the data type).

out -- Value (<type> is dependent on the data type of the enrty).
out -- Completion status

CDF attr put is used to write an attribute entry to a CDF. The entry may or may not already exist. If it does exist, it is
overwritten. The data type and number of elements (of that data type) may be changed when overwriting an existing

entry.

The arguments to CDF _attr put are defined as follows:

id

attr num

entry_num

data_type

num_elements

value

The identifier of the CDF. This identifier must have been initialized by a call to
CDF _create or CDF_open.

The attribute number. This number may be determined with a call to CDF_attr num
(see Section 5.9).

The entry number. If the attribute is global in scope, this is simply the gEntry number
and has meaning only to the application. If the attribute is variable in scope, this is the
number of the associated rVariable (the rVariable being described in some way by the
rEntry).

The data type of the specified entry. Specify one of the data types defined in Section
4.5.

The number of elements of the data type. For character data types (CDF_CHAR and
CDF_UCHAR), this is the number of characters in the string (an array of characters).

For all other data types this is the number of elements in an array of that data type.

The value(s) to write. The entry value is written to the CDF from memory address
value.

7

WARNING: If the entry has one of the character data types (CDF_CHARor
CDF_UCHAR), then value must be a CHARACTER Fortran variable. If the entry
does not have one of the character data types, then value must NOT be a
CHARACTER Fortran variable.

status The completion status code. Chapter 7 explains how to interpret status codes.

num_elements elements of the data type data type will be written to the CDF starting from memory address value.

5.13.1 Example(s)

The following example writes two attribute entries. The first is to gEntry number one (1) of the gAttribute TITLE.
The second is to the variable scope attribute VALIDs for the rEntry that corresponds to the rVariable TMP.

INCLUDE '<path>cdf.inc'
PARAMETER TITLE LEN = 10 ! Length of CDF title.

INTEGER*4 id ! CDF identifier.
INTEGER*4 status ! Returned status code.
INTEGER*4 entry num ! Entry number.
INTEGER*4 num_ elements ! Number of elements (of data type).
CHARACTER title*(TITLE_LEN) ! Value of TITLE attribute, rEntry number 1.
INTEGER*2 TMPvalids (2) ! Value(s) of VALIDs attribute,

|

rEntry for rVariable TMP

DATA title/'CDF title.'/, TMPvalids/15,30/

entry num = 1

CALL CDF_attr put (id, CDF_attr num(id, 'TITLE'), entry num, CDF CHAR,
1 TITLE LEN, title, status)

IF (status .NE. CDF OK) CALL UserStatusHandler (status)

num_ elements = 2

CALL CDF_attr put (id, CDF_attr num(id, 'VALIDs'), CDF var num(id, 'TMP'),
1 CDF_INT2, num elements, TMPvalids, status)

IF (status .NE. CDF OK) CALL UserStatusHandler (status)

5.14 CDF_attr_get

SUBROUTINE CDF _attr get (

INTEGER*4 id, ! in -- CDF identifier.

2R

INTEGER*4 attr num,
INTEGER*4 entry num,

<type>

INTEGER*4 status)

in -- attribute number.

in -- Entry number.

out -- Value (<type> is dependent on the data type of the enrty).
out -- Completion status

value,

CDF attr get is used to read an attribute entry from a CDF. In most cases it will be necessary to call
CDF attr entry inquire before calling CDF attr get in order to determine the data type and number of elements (of
that data type) for the entry.

The arguments to CDF _attr get are defined as follows:

id

The identifier of the CDF. This identifier must have been initialized by a call to CDF_create
or CDF_open.

attr num The attribute number. This number may be determined with a call to CDF_attr num (see

Section 5.9).

entry num The entry number. If the attribute is global in scope, this is simply the gEntry number and

has meaning only to the application. If the attribute is variable in scope, this is the number
of the associated rVariable (the rVariable being described in some way by the rEntry).

value The value read. This buffer must be large enough to hold the value. The function

CDF attr entry inquire would be used to determine the entry data type and number of
elements (of that data type). The value is read from the CDF and placed into memory at
address value.

WARNING: If the entry has one of the character data types (CDF_CHARor
CDF_UCHAR), then value must be a CHARACTER Fortran variable. If the entry does not
have one of the character data types, then value must NOT be a CHARACTER Fortran
variable.

status The completion status code. Chapter 7 explains how to interpret status codes.

5.14.1

Example(s)

The following example displays the value of the UNITS attribute for the rEntry corresponding to the PRES LVL
rVariable (but only if the data type is CDF_CHAR).

INCLUDE '<path>cdf.inc'

INTEGER*4 id
INTEGER*4 status
INTEGER*4 attr n
INTEGER*4 entryN
INTEGER*4 data type
INTEGER*4 num_elems
CHARACTER buffer*100

CDF identifier.

Returned status code.

Attribute number.

Entry number.

Data type.

Number of elements (of data type).

Buffer to receive value (in this case it is
assumed that 100 characters is enough).

attr n = CDF_attr Num (id, 'UNITS')

IF

(attr n .LT. 0) CALL UserStatusHandler (attr n) ! If less than one (1),
! then it must be a

20

! warning/error code.

entryN = CDF var num (id, 'PRES LVL') ! The rEntry number is
! the rVariable number.
IF (entryN .LT. 0) CALL UserStatusHandler (entryN) ! If less than one (1),

! then it must be a

! warning/error code.

CALL CDF_attr entry inquire (id, attr n, entryN, data type, num elems,
1 status)
IF (status .NE. CDF OK) CALL UserStatusHandler (status)
IF (data type .EQ. CDF_CHAR) THEN
CALL CDF_attr get (id, attr n, entryN, buffer, status)
IF (status .NE. CDF OK) CALL UserStatusHandler (status)
WRITE (6,10) buffer(l:num elems)
10 FORMAT (' ',A)
END IF
5.15 CDF _var_create

SUBROUTINE CDF var create (

INTEGER*4 id, ! in -- CDF identifier.

CHARACTER var_name*(*), ! in -- rVariable name.

INTEGER*4 data type, ! in -- Data type.

INTEGER*4 num_elements, ! in -- Number of elements (of the data type).
INTEGER*4 rec variance, ! in -- Record variance.

INTEGER*4 dim_variances(*), ! in -- Dimension variances.

INTEGER*4 var num, ! out -- rVariable number.

CDF _var_create is used to create a new rVariable in a CDF. A variable (rVariable or zVariable) with the same name
must not already exist in the CDF.

The arguments to CDF_var create are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to
CDF _create or CDF_open.

var_name The name of the rVariable to create. This may be at most CDF VAR NAME LEN
characters. Variable names are case-sensitive.

data_type The data type of the new rVariable. Specify one of the data types defined in Section 4.5.

The number of elements of the data type at each value. For character data types
(CDF_CHAR and CDF _UCHAR), this is the number of characters in the string (each
value consists of the entire string). For all other data types this must always be one (1) -
multiple elements at each value are not allowed for non-character data types.

num_elements

an

rec_variance The rVariable's record variance. Specify one of the variances defined in Section 4.9.

dim_variances The rVariable's dimension variances. Each element of dim_variances specifies the
corresponding dimension variance. For each dimension specify one of the variances
defined in Section 4.9. For 0-dimensional rVariables this argument is ignored (but must
be present).

var_num The number assigned to the new rVariable. This number must be used in subsequent
CDF function calls when referring to this rVariable. An existing rVariables's number
may be determined with the CDF_var num function.
status The completion status code. Chapter 7 explains how to interpret status codes.
5.15.1 Example(s)

The following example will create several rVariables in a CDF whose rVariables are 2-dimensional. In this case
EPOCH, LAT, and LON are independent rVariables, and TMP is a dependent rVariable.

INCLUDE '<path>cdf.inc'

INTEGER*4

id ! CDF identifier.
INTEGER*4 status ! Returned status code.
INTEGER*4 EPOCH rec vary EPOCH record variance.

|
INTEGER*4 LAT rec vary ! LAT record variance.
INTEGER*4 LON rec vary ! LON record variance.
INTEGER*4 TMP_ rec vary ! TMP record variance.
INTEGER*4 EPOCH dim varys(2) ! EPOCH dimension variances.
INTEGER*4 LAT dim varys(2) ! LAT dimension variances.
INTEGER*4 LON dim varys(2) ! LON dimension variances.
INTEGER*4 TMP dim varys(2) ! TMP dimension variances.
INTEGER*4 EPOCH var num ! EPOCH variable number.
INTEGER*4 LAT var num ! LAT rVariable number.
INTEGER*4 LON_var num ! LON rVariable number.
INTEGER*4 TMP var num ! TMP rVariable number.

DATA EPOCH rec vary/VARY/, LAT rec vary/NOVARY/,
1 LON rec vary/NOVARY/, TMP rec vary/VARY/

DATA EPOCH dim varys/NOVARY,NOVARY/, LAT dim varys/NOVARY,VARY/,
1 LON dim varys/VARY,NOVARY/, TMP dim varys/VARY,VARY/

CALL CDF var create

(id, 'EPOCH', CDF EPOCH, 1,
1 EPOCH rec vary, EPOCH dim varys, EPOCH var num, status)
IF (status .NE. CDF OK) CALL UserStatusHandler (status)
CALL CDF _var create (id, 'LATITUDE', CDF_INTZ2, 1,
1 LAT rec vary, LAT dim varys, LAT var num, status)
IF (status .NE. CDF OK) CALL UserStatusHandler (status)
CALL CDF _var create (id, 'LONGITUDE', CDF INT2, 1,
1 LON_ rec vary, LON dim varys, LON var num, status)

a1

IF (status .NE. CDF OK) CALL UserStatusHandler (status)
CALL CDF var create (id, 'TEMPERATURE', CDF REAL4, 1,

1 TMP rec vary, TMP dim varys, TMP var num, status)
IF (status .NE. CDF OK) CALL UserStatusHandler (status)

5.16 CDF_var_num

INTEGER*4 FUNCTION CDF var num (

INTEGER*4 id, 'in-- CDF identifier.
CHARACTER var_name*(*)); !in-- rVariable name.

CDF_var_num is used to determine the number associated with a given rVariable name. If the rVariable is found,
CDF _var num returns its number - which will be equal to or greater than one (1). If an error occurs (e.g., the rVariable

does not exist in the CDF), an error code (of type INTEGER*4) is returned. Error codes are less than zero (0).

The arguments to CDF_var num are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create
or CDF_open.
VarName The name of the rVariable for which to search. This may be at most

CDF VAR NAME LEN characters. Variable names are case-sensitive.

CDF var num may be used as an embedded function call when an rVariable number is needed. CDF _var num is
declared in cdf.inc. (Fortran functions must be declared so that the returned value is interpreted correctly.)

5.16.1 Example(s)

In the following example CDF var num is used as an embedded function call when inquiring about an rVariable.

INCLUDE '<path>cdf.inc'

CDF identifier.

Returned status code.
rVariable name.

Data type of the rVariable.
Number of elements (of the
data type).

Record variance.

Dimension variances.

INTEGER*4 id

INTEGER*4 status

CHARACTER var name* (CDF_VAR NAME LEN)
INTEGER*4 data type

INTEGER*4 num_ elements

INTEGER*4 rec variances
INTEGER*4 dim variances (CDF_MAX DIMS)

CALL CDF var inquire (id, CDF var num(id, 'LATITUDE'), var name, data type,
1 num elements, rec variance, dim variances, status)

amn

IF (status .NE. CDF OK) CALL UserStatusHandler (status)

In this example the rVariable named LATITUDE was inquired. Note that if LATITUDE did not exist in the CDF, the
call to CDF_var num would have returned an error code. Passing that error code to CDF var inquire as an rVariable
number would have resulted in CDF _var inquire also returning an error code. Also note that the name written into
var_name is already known (LATITUDE). In some cases the rVariable names will be unknown - CDF_var_inquire
would be used to determine them. CDF_var_inquire is described in Section 5.18.

5.17 CDF_var_rename

SUBROUTINE CDF var rename (

INTEGER*4 id,
INTEGER*4 var num,
CHARACTER var _name*(*),
INTEGER*4 status)

in -- CDF identifier.
in -- rVariable number.
in -- New name.

out -- Completion status

CDF _var_rename is used to rename an existing rVariable. A variable (rVariable or zVariable) with the same name
must not already exist in the CDF.

The arguments to CDF_var rename are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create
or CDF_open.
var_num The number of the rVariable to rename. This number may be determined with a call to

CDF _var num (see Section 5.16).

var_name The new rVariable name. This may be at most CDF VAR NAME LEN characters.
Variable names are case-sensitive.

status The completion status code. Chapter 7 explains how to interpret status codes.

5.17.1 Example(s)

In the following example the rVariable named TEMPERATURE is renamed to TMP (if it exists). Note that if
CDF var num returns a value less than one (1) then that value is not an rVariable number but rather a warning/error
code.

INCLUDE '<path>cdf.inc'

INTEGER*4 id ! CDF identifier.

INTEGER*4 status ! Returned status code.
INTEGER*4 var num ! rvVariable number.

var num = CDF var num (id, 'TEMPERATURE')

ar

IF (var num .LT. 1) THEN

IF

ELSE

(var num .NE. NO SUCH VAR) CALL UserStatusHandler (var_ num)

CALL CDF var rename (id, var num, 'TMP', status)

IF
END IF

5.18

(status .NE. CDF OK) CALL UserStatusHandler (status)

CDF _var_inquire

SUBROUTINE CDF _var_inquire (

INTEGER*4
INTEGER*4

CHARACTER var name*(CDF_VAR NAME LEN),

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

CDF var inquire is used to inquire about the specified rVariable.
reading rVariable values (with CDF var get or CDF var hyper get) to determine the data type and number of

id,

var_num,

in -- CDF identifier.
in -- rVariable number.
out -- rVariable name.
data type, out -- Data type.
num_elements,

rec_variance,
dim_variances(CDF_MAX DIMS),

status)

out -- Record variance.
out -- Dimension variances.
out -- Completion status

elements (of that data type).

The arguments to CDF _var inquire are defined as follows:

out -- Number of elements (of the data type).

This function would normally be used before

id

var_num

var_name

data_type

num_elements

rec_variance

dim_variances

status

The identifier of the CDF. This identifier must have been initialized by a call to
CDF _create or CDF_open.

The number of the rVariable to inquire. This number may be determined with a call to
CDF _var num (see Section 5.16).

The rVariable's name. This character string must be large enough to hold
CDF VAR NAME LEN characters and will be blank padded if necessary.

The data type of the rVariable. The data types are defined in Section 4.5.

The number of elements of the data type at each rVariable value. For character data types
(CDF_CHAR and CDF_UCHAR), this is the number of characters in the string. (Each
value consists of the entire string.) For all other data types, this will always be one (1) -
multiple elements at each value are not allowed for non-character data types.

The record variance. The record variances are defined in Section 4.9.

The dimension variances. Each element of dim_variances receives the corresponding
dimension variance. The dimension variances are defined in Section 4.9. For 0-

dimensional rVariable this argument is ignored (but must be present).

The completion status code. Chapter 7 explains how to interpret status codes.

a4

5.18.1

The following example inquires about an rVariable named HEAT FLUX in a CDF. Note that the rVariable name

Example(s)

returned by CDF _var inquire will be the same as that passed in to CDF_var num.

INCLUDE '<path>cdf.inc'

INTEGER*4
INTEGER*4
CHARACTER
INTEGER*4
INTEGER*4

id

status

var _name* (CDF_ VAR NAME LEN)
data_ type

CDF identifier.
Returned status code.
rVariable name.

Data type.

Number of elements (of data type).

Record variance.

Dimension variances (allocate to
allow the maximum number of
dimensions) .

INTEGER*4
INTEGER*4

rec_vary

!
!
!
!
num_elems !
!
dim varys (CDF_MAX DIMS) !

!

!

CALL CDF var inquire (id, CDF var num(id, 'HEAT FLUX'), var name, data type,

1 num elems, rec vary, dim varys, status)
IF (status .NE. CDF OK) CALL UserStatusHandler (status)
5.19 CDF_var_put

SUBROUTINE CDF_var_put (

INTEGER*4 id, ! in -- CDF identifier.

INTEGER*4 var num, ! in -- rVariable number.

INTEGER*4 rec_num, ! in -- Record number.

INTEGER*4 indices(*), ! in -- Dimension indices.

<type> value, ! out -- Value (<type> is dependent on the data type of the rVariable).
INTEGER*4 status) ! out -- Completion status

CDF var put is used to write a single value to an rVariable. CDF var hyper put may be used to write more than one
rVariable value with a single call (see Section 5.21).

The arguments to CDF_var put are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create
or CDF_open.

var_num The number of the rVariable to which to write. This number may be determined with a call
to CDF_var_num (see Section 5.16).

rec_num The record number at which to write.

ViR

indices The array indices within the specified record at which to write. Each element of indices
specifies the corresponding dimension index. For O-dimensional rVariables this argument is
ignored (but must be present).

value The value to write. The value is written to the CDF from memory address value.

WARNING: If the rVariable has one of the character data types (CDF_CHARor
CDF_UCHAR), then value must be a CHARACTER Fortran variable. If the rVariable does
not have one of the character data types, then value must NOT be a CHARACTER Fortran
variable.

status The completion status code. Chapter 7 explains how to interpret status codes.

5.19.1 Example(s)

The following example writes values to the rVariable named LATITUDE in a CDF whose rVariables are 2-
dimensional with dimension sizes [360,181]. For LATITUDE the record variance is NOVARY, the dimension
variances are [NOVARY,VARY], and the data type is CDF_INT2.

INCLUDE '<path>cdf.inc'

CDF identifier.
Returned status code.
Latitude value.
rVariable number.
Record number.
Dimension indices.

INTEGER*4 id
INTEGER*4 status
INTEGER*2 lat
INTEGER*4 var n
INTEGER*4 rec num
INTEGER*4 indices (2)

DATA rec num/1/, indices/1,1/

var n = CDF var num (id, 'LATITUDE')

IF (var n .LT. 1) CALL UserStatusHandler (var n) If less than one (1),
then not an rVariable
number but rather a
warning/error code.
DO lat = -90, 90

indices (2) = 91 + lat

CALL CDF _var put (id, var n, rec_num, indices, lat, status)

IF (status .NE. CDF OK) CALL UserStatusHandler (status)
END DO

Since the record variance is NOVARY, the record number (rec_num) is set to one (1). Also note that because the
dimension variances are [NOVARY,VARY], only the second dimension is varied as values are written. (The values are
“virtually” the same at each index of the first dimension.)

4A

5.20 CDF _var_get

SUBROUTINE CDF var get (

INTEGER*4 id,
INTEGER*4 var num,
INTEGER*4 rec num,
INTEGER*4 indices(¥),
<type> value,
INTEGER*4 status)

in -- CDF identifier.

in rVariable number.

in -- Record number.

in -- Dimension indices.

out -- Value (<type> is dependent on the data type of the rVariable).
out -- Completion status

CDF _var_get is used to read a single value from an rVariable. CDF_var_hyper get may be used to read more than one
rVariable value with a single call (see Section 5.22).

The arguments to CDF _var get are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF _create
or CDF_open.
var_num The number of the rVariable from which to read. This number may be determined with a

call to CDF_var num (see Section 5.16).
rec_num The record number at which to read.

indices The array indices within the specified record at which to read. Each element of indices
specifies the corresponding dimension index. For 0-dimensional rVariables this argument is
ignored (but must be present).

value The value read. This buffer must be large enough to hold the value. CDF var inquire
would be used to determine the rVariable's data type and number of elements (of that data
type) at each value. The value is read from the CDF and placed at memory address value.

WARNING: If the rVariable has one of the character data types (CDF_CHAR or
CDF_UCHAR), then value must be a CHARACTER Fortran variable. If the rVariable does
not have one of the character data types, then value must NOT be a CHARACTER Fortran
variable.

status The completion status code. Chapter 7 explains how to interpret status codes.

5.20.1 Example(s)

The following example will read and hold an entire record of data from an rVariable. The CDF's rVariables are 3-
dimensional with sizes [180,91,10]. For this rVariable the record variance is VARY, the dimension variances are
[VARY,VARY,VARY], and the data type is CDF_REALA4.

INCLUDE '<path>cdf.inc'

INTEGER*4 id ! CDF identifier.
INTEGER*4 status ! Returned status code.
REAL*4 tmp (180,91,10) ! Temperature values.
INTEGER*4 indices (3) ! Dimension indices.
INTEGER*4 var n ! rVariable number.

a7

INTEGER*4 rec num ! Record number.

INTEGER*4 d1, d2, d3 ! Dimension index wvalues.

var n = CDF var num (id, 'Temperature')

IF (var n .LT. 1) CALL UserStatusHandler (var_n) ! ITf less than one (1),
! then it is actually a
! warning/error code.

rec_num = 13

DO dl = 1, 180
indices (1) = dil
DO d2 =1, 91
indices (2) = d2
DO d3 =1, 10
indices (3) = d3
CALL CDF _var _get (id, var n, rec _num, indices, tmp(dl,d2,d3), status)
IF (status .NE. CDF OK) CALL UserStatusHandler (status)
END DO
END DO
END DO

5.21 CDF_var_hyper_put

SUBROUTINE CDF var hyper put (

INTEGER*4 id,
INTEGER*4 var num,
INTEGER*4 rec_start,
INTEGER*4 rec_count,
INTEGER*4 rec_interval,
INTEGER*4 indices(*),
INTEGER*4 counts(*),
INTEGER*4 intervals(*),
<type> buffer,
INTEGER*4 status)

!'in -- CDF identifier.

! in -- rVariable number.

! in -- Starting record number.

! in -- Number of records.

! in -- Interval between records.

! in -- Dimension indices of starting value.

! in -- Number of values along each dimension.

!'in -- Interval between values along each dimension.

! in -- Buffer of values (<type> is dependent on the data type of the rVariable).

! out -- Completion status

CDF_var_hyper put is used to write a buffer of one or more values to an rVariable. It is important to know the
variable majority of the CDF before using CDF var hyper put because the values in the buffer to be written must be in
the same majority. CDF _inquire can be used to determine the default variable majority of a CDF distribution. The
Concepts chapter in the CDF User's Guide describes the variable majorities.

The arguments to CDF_var hyper put are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create
or CDF_open.
var_num The number of the rVariable to which to write. This number may be determined with a call to

CDF _var num (see Section 5.16).

4R

rec_start
rec_count

rec_interval

The record number at which to start writing.
The number of records to write.

The interval between records for subsampling1 (e.g., An interval of 2 means write to every
other record).

indices The indices (within each record) at which to start writing. Each element of indices specifies
the corresponding dimension index. If there are zero (0) dimensions, this argument is ignored
(but must be present).

counts The number of values along each dimension to write. Each element of count specifies the
corresponding dimension count. For 0-dimensional rVariables this argument is ignored (but
must be present).

intervals For each dimension the interval between values for subsampling” (e.g., an interval of 2 means
write to every other value). intervals is a 1-dimensional array containing one element per
rVariable dimension. Each element of intervals specifies the corresponding dimension
interval. For 0-dimensional rVariables this argument is ignored (but a place holder is
necessary).

buffer The buffer of values to write. The majority of the values in this buffer must be the same as
that of the CDF. The values starting at memory address buffer are written to the CDF.
WARNING: If the rVariable has one of the character data types (CDF_CHAR or
CDF_UCHAR), then value must be a CHARACTER Fortran variable. If the entry does not
have one of the character data types, then value must NOT be a CHARACTER Fortran
variable.

status The completion status code. Chapter 7 explains how to interpret status codes.

5.21.1 Example(s)

The following example writes values to the rVariable LATITUDE of a CDF whose rVariables are 2-dimensional with
dimension sizes [360,181]. For LATITUDE the record variance is NOVARY, the dimension variances are
[NOVARY,VARY], and the data type is CDF _INT2. This example is similar to the example in Section 5.19

except that it uses a single call to CDF _var hyper put rather than numerous calls to CDF_var put.

INCLUDE '<path>cdf.inc'

INTEGER*4

id ! CDF identifier.
INTEGER*4 status ! Returned status code.
INTEGER*2 lat ! Latitude value.
INTEGER*2 lats (181) ! Buffer of latitude values.
INTEGER*4 var n ! rvVariable number.
INTEGER*4 rec start ! Record number.
INTEGER*4 rec count ! Record counts.
INTEGER*4 rec interval ! Record interval.
INTEGER*4 indices (2) ! Dimension indices.
INTEGER*4 counts (2) ! Dimension counts.

' »Subsampling" is not the best term to use when writing data, but you should know what we mean.
* Again, not the best term.

49

INTEGER*4 intervals (2) ! Dimension intervals.

DATA rec start/l/, rec count/l/, rec interval/l/,
1 indices/1,1/, counts/1,181/, intervals/1,1/

var n = CDF _var num (id, 'LATITUDE')

IF (var n .LT. 1) CALL UserStatusHandler (var n)

DO lat

If less than one (1),
then not an rVariable
number but rather a
warning/error code

= =90, 90

lats (91+1lat) = lat

END DO

CALL CDF _var hyper put (id, var_n, rec start, rec count, rec interval,

1

indices, counts, intervals, lats, status)

IF (status .NE. CDF OK) CALL UserStatusHandler (status)

522 C

DF_var_hyper_get

SUBROUTINE CDF _var hyper get (

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
<type>

INTEGER*4

id, !'in -- CDF identifier.

var_num, ! in -- rVariable number.

rec_start, ! in -- Starting record number.

rec_count, ! in -- Number of records.

rec_interval, ! in -- Subsampling interval between records.

indices(¥), ! in -- Dimension indices of starting value.

counts(*), ! in -- Number of values along each dimension.

intervals(*), ! in -- Subsampling intervals along each dimension.

buffer, ! in -- Buffer of values (<type> is dependent on the data type of the rVariable).
status) ! out -- Completion status

CDF _var_hyper_get is used to read a buffer of one or more values from an rVariable. It is important to know the
variable majority of the CDF before using CDF var hyper get because the values placed into the buffer will be in that
majority. CDF_inquire can be used to determine the default variable majority of a CDF distribution. The Concepts
chapter in the CDF User's Guide describes the variable majorities.

The arguments to CDF_var hyper get are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create or
CDF _open.

var_num The number of the rVariable from which to read. This number may be determined with a call to
CDF _var num (see Section 5.16).

rec_start The record number at which to start reading.

rec_count The number of records to read.

KN

rec_interval

indices

counts

intervals

buffer

status

The interval between records for subsampling (e.g., an interval of 2 means read every other
record).

The indices (within each record) at which to start reading. Each element of indices specifies the
corresponding dimension index. If there are zero (0) dimensions, this argument is ignored (but
must be present).

The number of values along each dimension to read. Each element of counts specifies the
corresponding dimension count. For 0-dimensional rVariables this argument is ignored (but
must be present).

For each dimension, the interval between values for subsampling (e.g., an interval of 2 means
read every other value). Each element of intervals specifies the corresponding dimension
interval. For O-dimensional rVariables, this argument is ignored (but must be present).

The buffer of values read. The majority of the values in this buffer will be the same as that of the
CDF. This buffer must be large to hold the values. CDF_var inquire would be used to
determine the rVariable's data type and number of elements (of that data type) at each value. The
values are read from the CDF and placed into memory starting at address buffer.

WARNING: If the rVariable has one of the character data types (CDF_CHAR or
CDF_UCHAR), then value must be a CHARACTER Fortran variable. If the rVariable does not
have one of the character data types, then value must NOT be a CHARACTER Fortran variable.

The completion status code. Chapter 7 explains how to interpret status codes.

5.22.1 Example(s)

The following example will read an entire record of data from an rVariable. The CDF’s rVariables are 3-dimensional

with sizes [180,91,10]

and CDF’s variable majority is ROW_MAJOR. For the rVariable the record variance is VARY,

the dimension variances are [VARY,VARY,VARY], and the data type is CDF REAL4. This example is similar to the
example in Section 5.20 except that it uses a single call to CDF var hyper get rather than numerous calls to

CDF var get.

INCLUDE '<path>cdf.inc'

INTEGER*4 id

INTEGER*4 status

REAL*4 tmp (1

INTEGER*4 var n
INTEGER*4 rec start
INTEGER*4 rec count
INTEGER*4 rec interval
INTEGER*4 indices (3)
INTEGER*4 counts (3)
INTEGER*4 intervals (3)

CDF identifier.
Returned status code.
Temperature values.
rVariable number.
Record number.

Record counts.

Record interval.
Dimension indices.
Dimension counts.
Dimension intervals.

80,91,10)

DATA rec start/13/, rec count/l/, rec_ interval/l/,

1 indices

/1,1,1/, counts/180,91,10/, intervals/1,1,1/

var n = CDF var num (id, 'Temperature')

K1

IF (var n .LT. 1) CALL UserStatusHandler (var_n) ! If less than one (1),
! then it is actually a
! warning/error code.

CALL CDF var hyper get (id, var n, rec start, rec count, rec interval,
1 indices, counts, intervals, tmp, status)
IF (status .NE. CDF OK) CALL UserStatusHandler (status)

Note that if the CDF's variable majority had been ROW_MAIJOR, the tmp array would have been declared REAL*4
tmp[10][91][180] for proper indexing.

5.23 CDF var_close

SUBROUTINE CDF _var _close (

INTEGER*4 1id, ! in -- CDF identifier.
INTEGER*4 var num, ! in -- rVariable number.
INTEGER*4 status) ! out -- Completion status

CDF var close is used to close an rVariable in a multi-file CDF. This function is not applicable to single-file CDFs.
The use of CDF_var_close is not required since the CDF library automatically closes the rVariable files when a multi-
file CDF is closed or when there are insufficient file pointers available (because of an open file quota) to keep all of the
rVariable files open. CDF var close would be used by an application since it knows best how its rVariables are going
to be accessed. Closing an rVariable would also free the cache buffers that are associated with the rVariable's file.
This could be important in those situations where memory is limited (e.g., the IBM PC). The caching scheme used by
the CDF library is described in the Concepts chapter in the CDF User's Guide. Note that there is not a function that
opens an rVariable. The CDF library automatically opens an rVariable when it is accessed by an application (unless it
is already open).

The arguments to CDF_var close are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDF_create or
CDF _open.
var_num The number of the rVariable to close. This number may be determined with a call to

CDF _var num (see Section 5.16).

status The completion status code. Chapter 7 explains how to interpret status codes.
5.23.1 Example(s)
The following example will close an rVariable in a multi-file CDF.

INCLUDE '<path>cdf.inc'

INTEGER*4 id ! CDF identifier.
INTEGER*4 status ! Returned status code.

{2

CALL CDF _var close (id, CDF var num(id, 'Flux'), status)
IF (status .NE. CDF OK) CALL UserStatusHandler (status)

5.24 CDF_getrvarsrecorddata

SUBROUTINE CDF _getrvarsrecorddata(

INTEGER*4 id, !"in -- CDF identifier.

INTEGER*4 num var ! in -- Number of rVariables.

INTEGER*4 var_nums(*) ! in -- rVariable numbers.

INTEGER*4 rec_num ! in -- Record number.

<type> buffer ! out -- First variable buffer in a common block (<type> depends
! on the data type of the rVariable).

INTEGER*4 status ! out -- Completion status.

CDF _getrvarsrecorddata is used to read a full record data at a specific record number for a selected group of rVariables

in a CDF. It expects that the data buffer for each rVariable is big enough to hold a full physical record’ data and

properly put in a common block. No space is needed for each rVariable's non-variant dimensional elements. Retrieved

record data from the variable group is filled into respective rVariable's buffer.
The arguments to CDF_getrvarsrecorddata are defined as follows:

id The identifier of the CDF. This identifier must have been initialized by a call to CDFcreate,
CDFopen or a similar CDF creation or opening functionality from the Internal Interface.

num_vars The number of the rVariables in the group involved this read operation.

var_nums The numbers of the rVariables involved for which to read a whole record data.

rec_num The record number at which to read the whole record data for the group of rVariables.
buffer The first variable buffer to read in a common block. The number of buffers should match to

the num_var argument. Each buffer should hold a full physical record data.

5.24.1 Example(s)

The following example will read an entire single record data for a group of rVariables. The CDF's rVariables are 2-
dimensional with sizes [2,2]. The rVariables involved in the read are Time, Longitude, Latitude and Temperature.
The record to read is 5. Since the dimension variances for Time are [NONVARY,NONVARY], a scalar variable of
INTEGER*4 is allocated for its data type CDF_INT4. For Longitude, a 1-dimensional array of REAL*4 is allocated
as its dimension variances are [VARY,NONVARY] with data type CDF_REAL4. A similar allocation is done for
Latitude for its [NONVARY,VARY] dimension variances and CDF_REAL4 data type. For Temperature, a 2-
dimensional array of REAL*4 is allocated due to its [VARY,VARY] dimension variances and CDF_REAL4 data

type.

? Physical record is explained in the Primer chapter in the CDF User's Guide.

53

INCLUDE '<path>cdf.inc'

INTEGER*4 id ! CDF identifier.

INTEGER*4 status ! Returned status code.
INTEGER*4 num_var ! Number of rVariables.
INTEGER*4 var_nums(4) ! rVariable numbers in CDF.
INTEGER*4 rec_num ! Record number to read.
INTEGER*4 time ! Datatype: INT4.

! Rec/dim variances: T/FF.
REAL*4 longitude(2) ! Datatype: REALA4.

! Rec/dim variances: T/TF.
REAL*4 latitude(2) ! Datatype: REALA4.

! Rec/dim variances: T/FT.
REAL*4 temperature(2,2) | Datatype: REAL4.

! Rec/dim variances: T/TT.
COMMON /BLK/time, longitude, latitude, temperature

num_var =4 ! Number of rVariables

rec_ num=>5 ! Record number to read

var_nums(1) = CDF_var_num (id, 'Time") ! rVariable number

IF (var_nums(1) .LT. 1) ! If less than one (1),

1 CALL UserStatusHandler (var_nums(1)) ! then it is actually a
! warning/error code.

var_nums(2) = CDF_var num (id, 'Longitude')

IF (var_nu